Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2\(^x\)-8)\(^3\)=(4\(^x\)+2\(^x\)+5)\(^3\)-(4\(^x\)+13)\(^3_{ }\)
(2\(^x\)-8)\(^3\)=[(4\(^x\)+2\(^x\)+5) - (4\(^x\)+13)].[(4\(^x\)... + (4\(^x\)+13)\(^2\)]
(2\(^x\) - 8)\(^3\) = (2\(^x\)-8).[(4\(^x\)+2\(^x\)+5)\(^2\)+(4\(^x\)+... + (4\(_{ }^x\)+13)\(^2\)]
2\(^x\) = 8 \(\Rightarrow\) x = 3
hoặc (2\(^x\)-8)\(^2\) = (4\(^x\)+2\(^x\)+5)\(^2\)+(4\(^x\)+2\(^x\)+5)(4\(^x\)+... + (4\(^x\)+13)\(^2\)
(4\(^x\)+2\(^x\)+5)\(^2\) - (2\(^x\)-8)\(^2\)+(4\(^x\)+2\(_{ }^x\)+5)(4\(^x\)+13) + (4\(^x\)+13)\(^2\) = 0
[(4^x+2^x+5)-(2^x-8)]*[(4^x+2^x+5)+(2^... + (4^x+3)*[(4^x+2^x+5)+(4^x+13)]=0
(4^x+13)*(4^x+2*2^x-3) + (4^x+3)*(2*4^x+2^x+18)=0
(4^x+13)[(4^x+2*2^x-3) + (2*4^x+2^x+18)]=0
4^x+13=0 (VN)
hoặc 3*4^x + 3*2^x +15=0
đặt t = 2\(^x\)( t > 0)
t\(^2\) + t + 5=0 ptvn
( Xin lỗi bạn , vì đoạn cuối mình mỏi tay nên ghi vậy đỡ nha ! (*) là dấu nhân nha bạn )
\(3\left(x+2\right)^2+\left(2x-3\right)^2-7\left(x-4\right)\left(x+4\right)=64\)
\(\Leftrightarrow3\left(x^2+4x+4\right)+\left(4x^2-12x+9\right)-7\left(x^2-16\right)=64\)
\(\Leftrightarrow3x^2+12x+12+4x^2-12x+9-7x^2+112=64\)
\(\Leftrightarrow12+9+112=64\)(vô lí)
Vậy pt vô nghiệm
TL:
\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-6x+9-7x^2+112=64\)
\(\Leftrightarrow6x+133=64\)
\(\Leftrightarrow6x=-69\)
\(\Leftrightarrow x=\frac{-23}{2}\)
Vậy....
`Answer:`
a. \(x^3+6x^2+12=19\)
\(\Leftrightarrow x^3+6x^2+12x-19=0\)
\(\Leftrightarrow x^3-x^2+7x^2-7x+19x-19=0\)
\(\Leftrightarrow x^2.\left(x-1\right)+7x\left(x-1\right)+19\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+19\right)=0\)
Ta có \(x^2+7x+19=x^2+2x.3,5+12,25+6,75=\left(x+3,5\right)^2+6,75>0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
b. \(5\left(x+9\right)^2.\left(x-4\right)^3-10\left(x+9\right)^3.\left(x-4\right)^2=0\)
\(\Leftrightarrow5\left(x+9\right)^2.\left(x-4\right)^2.[x-4-2\left(x+9\right)]=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(x-4-2x-18\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(-x-22\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2=0\) hoặc \(\left(x-4\right)^2=0\) hoặc \(-x-22=0\)
\(\Leftrightarrow x+9=0\) hoặc \(x-4=0\) hoặc \(-x=22\)
\(\Leftrightarrow x=-9\) hoặc \(x=4\) hoặc \(x=-22\)
c. \(\left(2x+3\right)^2+\left(x-2\right)^2-2\left(2x+3\right)\left(x-2\right)\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(2x+3-x+2\right)^2\)
\(=\left(x+5\right)^2\)
x5=x4+x3+x2+x+2
<=>x5-1=x4+x3+x2+x+1
VT=x5+x4+x3+x2+x-x4-x3-x2-x-1
=x(x4+x3+x2+x+1)-(x4+x3+x2+x+1)
=(x-1)(x4+x3+x2+x+1)
pt trở thành
(x-1)(x4+x3+x2+x+1)=x4+x3+x2+x+1
<=>[(x-1)-1](x4+x3+x2+x+1)=0
<=>(x-2)(x4+x3+x2+x+1)=0
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x^4+x^3+x^2+x+1=0\left(2\right)\end{array}\right.\)
\(\Leftrightarrow x=2\). Thấy x=0 không là nghiệm của (2)
Chia 2 vế cho x2 đc:
\(x^2+x+1+\frac{1}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)+\left(x^2+\frac{1}{x^2}\right)+1=0\)
\(\Leftrightarrow\left(t^2-2\right)+t+1=0\)
\(\Leftrightarrow t^2+t-1=0\)
\(\Leftrightarrow t=\frac{-1\pm\sqrt{5}}{2}\Rightarrow x\in\left\{\varnothing\right\}\)
Vậy pt trên có x=2 thỏa mãn