Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 + 3x2 + 3x + 1 = 64
=> (x + 1)3 = 64
=> (x + 1)3 = 43
=> x + 1 = 4 => x = 3
b) x3 + 6x2 + 9x = 4x
=> x3 + 6x2 + 9x - 4x = 0
=> x3 + 6x2 + 5x = 0
=> x3 + 5x2 + x2 + 5x = 0
=> x2(x + 5) + x(x + 5) = 0
=> (x + 5)(x2 + x) = 0
=> (x + 5)x(x + 1) = 0
=> \(\hept{\begin{cases}x=-5\\x=0\\x=-1\end{cases}}\)
c) 4(x - 2)2 = (x + 2)2
=> 4(x2 - 4x + 4) = x2 + 4x + 4
=> 4x2 - 16x + 16 = x2 + 4x + 4
=> 4x2 - 16x + 16 - x2 - 4x - 4 = 0
=> 3x2 - 20x + 12 = 0
=> 3x2 - 18x - 2x + 12 = 0
=> 3x(x - 6) - 2(x - 6) = 0
=> (x - 6)(3x - 2) = 0
=> \(\orbr{\begin{cases}x=6\\x=\frac{2}{3}\end{cases}}\)
d) x4 - 16x2 = 0
=> x2(x2 - 16) = 0
=> \(\orbr{\begin{cases}x^2=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
e) x4 - 4x3 + x2 - 4x = 0
=> x4 + x2 - 4x3 - 4x = 0
=> x2(x2 + 1) - 4x(x2 + 1) = 0
=> (x2 - 4x)(x2 + 1) = 0
=> x(x - 4)(x2 + 1) = 0
=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì x2 + 1 \(\ge\)1 > 0 \(\forall\)x)
f) x3 + x = 0 => x(x2 + 1) = 0 => x = 0 (vì x2 + 1 \(\ge1>0\forall\)x)
\(x^3+9x=0\)
<=> \(x\left(x^2+9\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x^2+9=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)
<=> \(x=0\)
\(9x^2-4-2\left(3x-2\right)^2=0\)
<=> \(\left(9x^2-4\right)-2\left(3x-2\right)^2=0\)
<=> \(\left[\left(3x\right)^2-2^2\right]-2\left(3x-2\right)^2=0\)
<=> \(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)
<=> \(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)
<=> \(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)
<=> \(\left(3x-2\right)\left(-3x+6\right)=0\)
<=> \(\left(3x-2\right)3\left(-x+2\right)=0\)
<=> \(3\left(3x-2\right)\left(2-x\right)=0\)
<=> \(\orbr{\begin{cases}3x-2=0\\2-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
\(\left(x^3-x^2\right)-4x+8x-4=0\)
<=> \(\left(x^3-x^2\right)+\left(4x-4\right)=0\)
<=> \(x^2\left(x-1\right)+4\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(x^2+4\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x^2+4=0\end{cases}}\)
<=> \(x=1\)
\(\left(25x^2-10x\right):\left(-5x\right)-3\left(x-2\right)=4\)
<=> \(5x\left(5x-2\right)\left(-\frac{1}{5x}\right)-3\left(x-2\right)=4\)
<=> \(-\left(5x-2\right)-3\left(x-2\right)=4\)
<=> \(\left(5x-2\right)+3\left(x-2\right)=-4\)
<=> \(5x-2+3x-6=-4\)
<=> \(8x-8=-4\)
<=> \(8\left(x-1\right)=-4\)
<=> \(x-1=-\frac{1}{2}\)
<=> \(x=-\frac{3}{2}\)
\(a,x^3-13x=0\)
\(x.\left(x^2-13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=13\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{13}\end{cases}}}\)
\(b,2-25x^2=0\)
\(\Rightarrow25x^2=2\Rightarrow x^2=\frac{2}{25}\Rightarrow x=\sqrt{\frac{2}{25}}\)
\(c,x^2-x+\frac{1}{4}=0\)
\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
a, x 3 - 13 x = 0
=> x ( x 2 - 13 ) = 0
=> \(\orbr{\begin{cases}x=0\\x^2=13\end{cases}\Rightarrow[\begin{cases}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{cases}}\)
b, 2 - 25 x 2 = 0
=> 25 x 2 = 2
=> x 2 = 0,08
=> \(\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=\frac{-\sqrt{2}}{5}\end{cases}}\)
x, x 2 - x + \(\frac{1}{4}\)= 0
=> \(\left(x-\frac{1}{2}\right)^2=0\)
=> \(x-\frac{1}{2}=0\)
=> \(x=\frac{1}{2}\)
Bài giải:
a) x3 – 1414x = 0 => x(x2 –(12)2(12)2) = 0
=>x(x - 1212)(x + 1212) = 0
Hoặc x = 0
Hoặc x - 1212 = 0 => x = 1212
Hoặc x + 1212 = 0 => x = -1212
Vậy x = 0; x = -1212; x = 1212.
b) (2x – 1)2 – (x + 3)2 = 0
[(2x - 1) - (x + 3)][(2x - 1) + (x + 3)] = 0
(2x - 1 - x - 3)(2x - 1 + x + 3) = 0
(x - 4)(3x + 2) = 0
Hoặc x - 4 = 0 => x = 4
Hoặc 3x + 2 = 0 => 3x = 2 => x = -2323
Vậy x = 4; x = -2323.
c) x2(x – 3) + 12 – 4x = 0
x2(x – 3) - 4(x -3)= 0
(x - 3)(x2- 22) = 0
(x - 3)(x - 2)(x + 2) = 0
Hoặc x - 3 = 0 => x = 3
Hoặc x - 2 =0 => x = 2
Hoặc x + 2 = 0 => x = -2
Vậy x = 3; x = 2; x = -2.
a ) \(x^3-\dfrac{1}{4}x=0\)
\(\Leftrightarrow\) \(x\left(x^2-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
Hoặc x = 0
Hoặc \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
Hoặc \(x+\dfrac{1}{2}=0\Rightarrow x=-\dfrac{1}{2}\)
b) \((2x - 1 )^2 - (x + 3)^2 = 0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x-3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
Hoặc \(x-4=0\Rightarrow x=4\)
Hoặc \(3x+2=0\Rightarrow3x=-2\Rightarrow x=-\dfrac{2}{3}\)
c) \(x^2 (x-3) + 12 - 4x = 0\)
\(\Leftrightarrow x^2\left(x-3\right)-\left(4x-12\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)=0\)
Hoặc \((x - 3) = 0\) \(\Rightarrow\) x = 3
Hoặc \(x - 2 = 0\) \(\Rightarrow\) x = 2
Hoặc \(x + 2 = 0 \) \(\Rightarrow\) x = \(- 2\)
1. \(x^3-\frac{1}{4}x=0\Leftrightarrow x\left(x^2-\frac{1}{4}\right)=0\Leftrightarrow x\left[x^2-\left(\frac{1}{2}\right)^2\right]=0\Leftrightarrow x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}}\)
Vậy S={0;1/2;-1/2}
2.\(\left(2x-1\right)^2-\left(x+3\right)^2=0\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-4=0\\3x+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\3x=-2\Leftrightarrow x=\frac{-2}{3}\end{cases}}\)
Vậy S={4; -2/3}
a) (2x - 3)2 = (x + 5)2
=> 4x2 - 12x + 9 = x2 + 10x + 25
=> 4x2 - 12x + 9 - (x2 + 10x + 25) = 0
=> 3x2 - 22x - 16 = 0
=> 3x2 - 24x + 2x - 16 = 0
=> 3x(x - 8) + 2(x - 8) = 0
=> (3x + 2)(x - 8) = 0
=> \(\orbr{\begin{cases}3x+2=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=8\end{cases}}\)
b) x2(x - 1) - 4x2 + 8x - 4 = 0
=> x2(x - 1) - (2x - 2)2 = 0
=> x2(x - 1) - [2(x- 1)]2 = 0
=> x2(x - 1) - 4(x - 1)2 = 0
=> (x - 1)(x2 - 4(x - 1) = 0
=> (x - 1)(x2 - 4x + 4) = 0
=> (x - 1)(x - 2)2 = 0
=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
c) x2 + 7x + 12 = 0
=> x2 + 3x + 4x + 12 = 0
=> x(x + 3) + 4(x + 3) = 0
=> (x + 4)(x + 3) = 0
=> \(\orbr{\begin{cases}x+4=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-3\end{cases}}\)
d) x2 + 3x - 18 = 0
=> x2 + 6x - 3x - 18 = 0
=> x(x + 6) - 3(x + 6) = 0
=> (x - 3)(x + 6) = 0
=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
e) x(x + 6) - 7x - 42 = 0
=> x(x + 6) - 7(x + 6) = 0
=> (x - 7)(x + 6) = 0
=> \(\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)
1. ( 2x - 3 )2 = ( x + 5 )2
<=> ( 2x - 3 )2 - ( x + 5 )2 = 0
<=> [ ( 2x - 3 ) - ( x + 5 ) ][ ( 2x - 3 ) + ( x + 5 ) ] = 0
<=> ( 2x - 3 - x - 5 )( 2x - 3 + x + 5 ) = 0
<=> ( x - 8 )( 3x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)
2. x2( x - 1 ) - 4x2 + 8x - 4 = 0
<=> x2( x - 1 ) - ( 4x2 - 8x + 4 ) = 0
<=> x2( x - 1 ) - 4( x2 - 2x + 1 ) = 0
<=> x2( x - 1 ) - 4( x - 1 )2 = 0
<=> ( x - 1 )[ x2 - 4( x - 1 ) ] = 0
<=> ( x - 1 )( x2 - 4x + 4 ) = 0
<=> ( x - 1 )( x - 2 )2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
3. x2 + 7x + 12 = 0
<=> x2 + 3x + 4x + 12 = 0
<=> x( x + 3 ) + 4( x + 3 ) = 0
<=> ( x + 3 )( x + 4 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)
4. x2 + 3x - 18 = 0
<=> x2 - 3x + 6x - 18 = 0
<=> x( x - 3 ) + 6( x - 3 ) = 0
<=> ( x - 3 )( x + 6 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
5. x( x + 6 ) - 7x - 42 = 0
<=> x( x + 6 ) - 7( x + 6 ) = 0
<=> ( x + 6 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Rightarrow\left(x^3+2^3\right)-x^3-2x=15\)
\(\Rightarrow x^3+8-x^3-2x=15\)
\(\Rightarrow8-2x=15\)
=>2x=8-15=-7
=>x=\(\frac{-7}{2}\)
\(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]=0\)
\(\Rightarrow\left(x^2-1\right)\left[\left(x^4-2x^2+1\right)-\left(x^4+x^2+1\right)\right]=0\)
\(\Rightarrow\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(-3x^2\right)=0\)
=>x2-1=0 hoặc -3x2=0
+)Nếu x2-1=0
=>x2=1
=>x=-1 hoặc x=1
+)Nếu -3x2=0
=>3x2=0
=>x2=0
=>x=0
Vậy x=-1 hoặc x=1 hoặc x=0
1) x2 - 7x = 0
=> x(x - 7) = 0
=> \(\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
2) -3x2 + 5x = 0
=> x(-3x + 5) = 0
=> \(\orbr{\begin{cases}x=0\\-3x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\)
3) x2 - 19x - 20 = 0
=> x2 - 20x + x - 20 = 0
=> x(x - 20) + (x - 20) = 0
=> (x + 1)(x - 20) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-20=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=20\end{cases}}\)
4) x2 - 5x - 24 = 0
=> x2 - 8x + 3x - 24 = 0
=> x(x - 8) + 3(x - 8) = 0
=> (x + 3)(x - 8) = 0
=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
1) x2 - 7x = 0
<=> x( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
2) -3x2 + 5x = 0
<=> x( -3x + 5 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\)
3) x2 - 19x - 20 = 0
<=> x2 + x - 20x - 20 = 0
<=> x( x + 1 ) - 20( x + 1 ) = 0
<=> ( x - 20 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x=20\\x=-1\end{cases}}\)
4) x2 - 5x - 24 = 0
<=> x2 + 3x - 8x - 24 = 0
<=> x( x + 3 ) - 8( x + 3 ) = 0
<=> ( x - 8 )( x + 3 ) = 0
<=> \(\orbr{\begin{cases}x=8\\x=-3\end{cases}}\)
\(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
\(x^3-6x^2+12x-8-x^3+6x^2=4\)
\(12x-8=4\)
\(12x=4+8\)
\(12x=12\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
\(\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)
\(x^3+3x^2+3x+1-x^3+4x^2-4x+x-1=0\)
\(7x^2=0\)
\(\Rightarrow x=0\)
Vậy \(x=0\)
Tham khảo nhé~