Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x\left(x+3\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Rightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=24\)
Đặt \(x^2+3x+1=t\)
\(\Rightarrow\left(t-1\right)\left(t+1\right)=24\)
\(\Rightarrow t^2-1=24\Rightarrow t^2=25\Rightarrow t=5;-5\)
Xét t=5 thì \(x^2+3x+1=5\Rightarrow x^2+3x-4=0\)
\(\Rightarrow x^2-x+4x-4=0\)
\(\Rightarrow x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Rightarrow\left(x+4\right)\left(x-1\right)=0\Rightarrow x=-4;1\)
Xét t=-5 ta có
\(x^2+3x+1=-5\Rightarrow x^2+3x+6=0\)
\(\Rightarrow x_1=\frac{-3+\sqrt{15}i}{2};x_2=\frac{-3-\sqrt{15}i}{2}\)
mà \(x\in Z\)nên x=-4;1
x^2 -2x = 24
=> x^2 - 2x - 24=0
=>x^2 -8x+6x - 24 = 0
=> ( x^2- 8x)+( 6x-24) = 0
=> x(x-8) + 6(x-8) = 0
=> (x+6)(x-8)=0
=>\(\orbr{\begin{cases}x=-6\\x=8\end{cases}}\)
(x + 2)2 - (x - 1)(x + 1) = 13
=> (x2 + 2.x.2 + 22 )- (x2 - 1) = 13 ( dùng hẳng đẳng thức số 1 và số 3)
=> x2 + 4x + 4 - x2 + 1 = 13
=> (x2 - x2) + 4x + 4 + 1 = 13
=> 4x + 4 + 1 = 13
=> 4x + 5 = 13
=> 4x = 8
=> x = 2
Vậy x = 2
(x + 1)3 + x(x - 1) = x3 + 4x2
=> x3 + 3.x2.1 + 3.x.12 + 13 + x2 - x - x3 - 4x2 = 0
=> x3 + 3x2 + 3x + 1 + x2 - x - x3 - 4x2 = 0
=> (x3 - x3) + (3x2 + x2 - 4x2) + (3x - x) + 1 = 0
=> 2x + 1 = 0 => 2x = -1 => x = -1/2
(x + 1)(x + 2) - (x + 3)2 = 24
=> x(x + 2) + 1(x + 2) - (x2 + 2.x.3 + 32) = 24
=> x2 + 2x + x + 2 - (x2 + 6x + 9) = 24
=> x2 + 2x + x + 2 - x2 - 6x - 9 = 24
=> (x2 - x2) + (2x + x - 6x) + (2 - 9) = 24
=> -3x - 7 = 24
=> -3x = 31
=> x = -31/3
(x - 1)(x2 + x + 1) + 2x = x3 + 5
Dựa vào hằng đẳng thức : (A - B)(A2 + AB + B2) = A3 - B3
=> (x - 1)(x2 + x.1 + 12) = x3 - 13 = x3 - 1
=> x3 - 1 + 2x - x3 - 5 = 0
=> (x3 - x3) - 1 + 2x - 5 = 0
=> -1 + 2x - 5 = 0
=> -1 + 2x = 5
=> 2x = 6
=> x = 3
\(\left(x+2\right)^2-\left(x-1\right)\left(x+1\right)=13\)
\(\left(x^2+4x+4\right)-\left(x^2-1\right)=13\)
\(x^2+4x+4-x^2+1=13\)
\(4x+5=13\)
\(4x=8\)
\(x=2\)
b,\(\left(x+1\right)^3+x\left(x-1\right)=x^3+4x^2\)
\(x^3+3x^2+3x+1+x^2-x-x^3-4x^2=0\)
\(2x+1=0\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
( x + 1 ) ( x - 1 )
= ..................
= x2 -1
100% là đúng
\(a,x^2-2x=24\)
\(x^2-2x-24=0\)
\(x^2-2x+1-25=0\)
\(\left(x-1\right)^2=5^2=\left(-5\right)^2\)
\(x-1=5\) hoặc \(x-1=-5\)
\(\Rightarrow\hept{\begin{cases}x=6\\x=-4\end{cases}}\)
\(b,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(2x+255=0\)
\(2x=-255\)
\(x=-\frac{255}{2}\)
a/ \(x^2-2x=24\)
<=> \(x^2-2x+1-1=24\)
<=> \(\left(x-1\right)^2=25\)
<=> \(\orbr{\begin{cases}x-1=25\\x-1=-25\end{cases}}\)<=> \(\orbr{\begin{cases}x=26\\x=-24\end{cases}}\)
b/ \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
<=> \(4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
<=> \(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
<=> \(2x+255=0\)
<=> \(2x=-255\)
<=> \(x=-\frac{255}{2}\)
(x-1)x(x+1)(x+2) = 24
<=> x4 + 2x3 - x2 - 2x - 24 = 0
<=> (x4 - 2x3) + (4x3 - 8x2) + (7x2 - 14x) + (12x - 24) = 0
<=> (x - 2)(x3 + 4x2 + 7x + 12) = 0
<=> (x - 2)[(x3 + 3x2) + (x2 + 3x) + (4x + 12)] = 0
<=> (x - 2)(x + 3)(x2 + x + 4) = 0
<=> x = 2 or x = - 3
xin lỗi mình ko biết nha bạn
xin lỗi mình ko biết nha bạn
xin lỗi mình ko biết nha bạn