\(|x-1|+|x-2|+|x-3|=2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2020

Bảng xét dấu:

    x                 1                 2                  3
  x - 1         -      0       +        |       +          |       +
  x - 2         -      |        -        0       +          |       +       
  x - 3      -      |        -         |       -          0       +

+) Với x < 1

Ta có: 1 - x + 2 - x + 3 - x = 2

=> 6 - 3x = 2

=> 3x = 4

=> x = 4/3 (ko thỏa mãn)

+) Với: 1 ≤ x < 2

Ta có: x - 1 + 2 - x + 3 - x = 2

=> 4 - x = 2

=> x = 2 (ktm)

+) Với 2 ≤ x < 3

Ta có: x - 1 + x - 2 + 3 - x = 2

=> x = 2 (thỏa mãn)

+) Với x ≥ 3

Ta có: x - 1 + x - 2 + x - 3 = 2

=> 3x - 6 = 2

=> 3x = 8

=> x = 8/3 (ktm)

Vậy x = 2

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)

16 tháng 9 2017

Ta có : \(\frac{\left(4^x\right)^2}{2^x}=8\)

\(\Rightarrow4^{2x}=8.2^x\)

\(\Rightarrow4^{2x}=2^3.2^x\)

\(\Rightarrow\left(2^2\right)^{2x}=2^{x+3}\)

\(\Rightarrow2^{4x}=2^{x+3}\)

=> 4x = x + 3

=> 3x = 3

=> x = 1

Vậy x = 1. 

30 tháng 11 2016

a)Ta có:

\(3^x-3^{x-3}=-234\)

\(\Rightarrow3^x-3^x\cdot3^3=-234\)

\(\Rightarrow3^x\cdot\left(1-3^3\right)=-234\)

\(\Rightarrow3^x\cdot\left(-26\right)=-234\)

\(\Rightarrow3^x=9\)

\(\Rightarrow x=2\)

Vậy x=2

\(\Rightarrow3^x=3^2\)

30 tháng 11 2016

b) Ta có:

\(2^{x+1}\cdot3^x-6^x=216\)

\(\Rightarrow2^x\cdot2\cdot3^x-2^x\cdot3^x=216\)

\(\Rightarrow\left(2^x\cdot3^x\right)\cdot\left(2-1\right)=216\)

\(\Rightarrow6^x\cdot1=216\)

\(\Rightarrow6^x=6^3\)

\(\Rightarrow x=3\)

Vậy x=3

2 tháng 2 2019

Nhác quá mấy bài này hỏi làm j

26 tháng 7 2016

B1:

a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)

-->(x+4)(x+4)=(x+3)(x+9)

\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27

\(x^2-x^2\)+4x+4x-9x-3x= - 16+27

 - 4x=11

x=\(\frac{-4}{11}\)

b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)

-->(x-5)(x+6)=(x+3)(x-4)

\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12

\(x^2-x^2\)+6x-5x+4x-3x=30-12

2x=18

x=9

c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)

--> (3x-1)(2x+1)=3x.(2x-1)

\(6x^2\)+3x-2x-1=\(6x^2\)-3x

\(6x^2-6x^2\)+3x-2x+3x=1

4x=1

x=\(\frac{1}{4}\)

 

26 tháng 7 2016

Hỏi đáp Toán