
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)


Ta có : \(\frac{\left(4^x\right)^2}{2^x}=8\)
\(\Rightarrow4^{2x}=8.2^x\)
\(\Rightarrow4^{2x}=2^3.2^x\)
\(\Rightarrow\left(2^2\right)^{2x}=2^{x+3}\)
\(\Rightarrow2^{4x}=2^{x+3}\)
=> 4x = x + 3
=> 3x = 3
=> x = 1
Vậy x = 1.

a)Ta có:
\(3^x-3^{x-3}=-234\)
\(\Rightarrow3^x-3^x\cdot3^3=-234\)
\(\Rightarrow3^x\cdot\left(1-3^3\right)=-234\)
\(\Rightarrow3^x\cdot\left(-26\right)=-234\)
\(\Rightarrow3^x=9\)
\(\Rightarrow x=2\)
Vậy x=2
\(\Rightarrow3^x=3^2\)
b) Ta có:
\(2^{x+1}\cdot3^x-6^x=216\)
\(\Rightarrow2^x\cdot2\cdot3^x-2^x\cdot3^x=216\)
\(\Rightarrow\left(2^x\cdot3^x\right)\cdot\left(2-1\right)=216\)
\(\Rightarrow6^x\cdot1=216\)
\(\Rightarrow6^x=6^3\)
\(\Rightarrow x=3\)
Vậy x=3

B1:
a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)
-->(x+4)(x+4)=(x+3)(x+9)
\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27
\(x^2-x^2\)+4x+4x-9x-3x= - 16+27
- 4x=11
x=\(\frac{-4}{11}\)
b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)
-->(x-5)(x+6)=(x+3)(x-4)
\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12
\(x^2-x^2\)+6x-5x+4x-3x=30-12
2x=18
x=9
c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)
--> (3x-1)(2x+1)=3x.(2x-1)
\(6x^2\)+3x-2x-1=\(6x^2\)-3x
\(6x^2-6x^2\)+3x-2x+3x=1
4x=1
x=\(\frac{1}{4}\)
Bảng xét dấu:
+) Với x < 1
Ta có: 1 - x + 2 - x + 3 - x = 2
=> 6 - 3x = 2
=> 3x = 4
=> x = 4/3 (ko thỏa mãn)
+) Với: 1 ≤ x < 2
Ta có: x - 1 + 2 - x + 3 - x = 2
=> 4 - x = 2
=> x = 2 (ktm)
+) Với 2 ≤ x < 3
Ta có: x - 1 + x - 2 + 3 - x = 2
=> x = 2 (thỏa mãn)
+) Với x ≥ 3
Ta có: x - 1 + x - 2 + x - 3 = 2
=> 3x - 6 = 2
=> 3x = 8
=> x = 8/3 (ktm)
Vậy x = 2