K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

\(\left(x-1\right)^2-\left(x+3\right)^2=0\)

\(\Rightarrow\left(x-1+x+3\right)\left(x-1-x-3\right)=0\)

\(\Rightarrow\left(2x+2\right)\left(-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+2=0\\-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=-2\\-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\-4=0\left(ktm\right)\end{cases}}\)

Vậy chọn đáp án A và C: \(x=-1\)

2 tháng 11 2018

\(x^2-3x+2.\left(x-3\right)=0\)

\(x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\left(x-3\right).\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

\(x.\left(x-3\right)-3x+9=0\)

\(x.\left(x-3\right)-3.\left(x-3\right)=0\)

\(\left(x-3\right)^2=0=>x=3\)

2 tháng 11 2018

a,\(x^2-3x+2\left(x-3\right)=0.\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

21 tháng 7 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 = 4

<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

Vậy S = { 5 ; 1 }

b) x2 - 9 = 0

<=> x2 = 9

<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy S = { 3 ; -3 }

c) x( x - 2x ) - x2 - 8 = 0

<=> x2 - 2x2 - x2 - 8 = 0

<=> -2x2 - 8 = 0

<=> -2x2 = 8

<=> x2 = -4 ( vô lí )

<=> x = \(\varnothing\)

Vậy S = { \(\varnothing\)}

21 tháng 7 2020

d) 2x( x - 1 ) - 2x2 + x - 5 = 0

<=> 2x2 - 2x - 2x2 + x - 5 = 0

<=> -x - 5 = 0

<=> -x = 5

<=> x = -5

Vậy S = { -5 }

e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0 

<=> x2 - 3x - ( x2 - x - 2 ) = 0

<=> x2 - 3x - x2 + x + 2 = 0

<=> - 2x + 2 = 0

<=> -2x = -2

<=> x = 1

Vậy S = { 1 }

f) x( 3x - 1 ) - 3x2 - 7x = 0

<=> 3x2 - x - 3x2 - 7x = 0

<=> -8x = 0

<=> x = 0

Vậy S = { 0 } 

21 tháng 7 2018

\(x\left(x-5\right)\left(x+5\right)-\left(x-2\right)\left(x^2+2x+4\right)=3\)

<=> \(x\left(x^2-25\right)-\left(x^3+2x^2+4x-2x^2-4x-8\right)=3\)

<=> \(x^3-25x-x^3-2x^2-4x+2x^2+4x+8=3\)

<=> \(-25x+8=3\)

<=> \(-25x=-5\)

<=> \(x=\frac{1}{5}\)

\(25x^2-2=0\)

<=> \(\left(5x\right)^2=2\)

<=> \(\hept{\begin{cases}5x=\sqrt{2}\\5x=-\sqrt{2}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=\frac{-\sqrt{2}}{5}\end{cases}}\)

\(\left(x+2\right)^2=\left(2x-1\right)^2\)

<=> \(\hept{\begin{cases}x+2=2x-1\\x+2=-2x+1\end{cases}}\)

<=> \(\hept{\begin{cases}-x=-3\\3x=-1\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}\)

\(\left(x+2\right)^2-x^2+4=0\)

<=> \(\left(x+2\right)^2-\left(x^2-4\right)=0\)

<=> \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)

<=> \(\left(x+2\right)\left(x+2-x+2\right)=0\)

<=> \(\left(x+2\right).4=0\)

<=> \(x+2=0\)

<=> \(x=-2\)

câu còn lại tương tự nha

12 tháng 8 2019

a) x(x-1) - (x+1)(x+2) = 0

    x\(^2\)- x -x\(^{^2}\)-2x +x+2=0

     -2x+2=0

      -2x=0+2

       -2x=2

         x=-1

Vậy x bằng -1

19 tháng 7 2018

a) 5xy ( x - y ) - 2x + 2y

= 5xy ( x - y ) - 2 ( x - y )

= ( x - y ) ( 5xy - 2 )

b) 6x-2y-x(y-3x)

= 2 ( y - 3x ) - x ( y - 3x )

= ( y - 3x ( ( 2 - x )

c)  x+ 4x - xy-4y

= x ( x + 4 ) - y ( x + 4 )

( x + 4 ) ( x - y )

d) 3xy + 2z - 6y - xz 

= ( 3xy - 6y ) + ( 2z - xz )

= 3y ( x - 2 ) + z ( x - 2 )

= ( x - 2 ) ( 3y + z )

19 tháng 7 2018

a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)

b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)

c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)

d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)

11)

a,4-9x^2=0

(2-3x)(2+3x)=0

2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3

b,x^2 +x+1/4=0

(x+1/2)^2 =0

x+1/2=0

x=-1/2

c,2x(x-3)+(x-3)=0

(x-3)(2x+1)=0

x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2

d,3x(x-4)-x+4=0

3x(x-4)-(x-4)=0

(x-4)(3x-1)=0

x-4=0=>x=4 hoặc 3x-1=0=>x=1/3

e,x^3-1/9x=0

x(x^2-1/9)=0

x(x+1/3)(x-1/3)=0

x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3

f,(3x-y)^2-(x-y)^2 =0

(3x-y-x+y)(3x-y+x-y)=0

2x(4x-2y)=0

4x(2x-y)=0

x=0hoặc 2x-y=0=>x=y/2

19 tháng 8 2020

Bài làm:

a) \(x+5x^2=0\)

\(\Leftrightarrow x\left(1+5x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+5x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)

b) \(x\left(x-1\right)=x-1\)

\(\Leftrightarrow x^2-x-x+1=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

c) \(5x\left(x-1\right)=1-x\)

\(\Leftrightarrow5x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{5}\end{cases}}\)

d) \(\left(3x-4\right)^2-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(2x-5\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{4}\end{cases}}\)

19 tháng 8 2020

\(a,x+5x^2=0< =>x\left(5x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=0\\5x+1=0\end{cases}< =>\orbr{\begin{cases}x=0\\5x=-1\end{cases}< =>\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}}}\)

\(b,x\left(x-1\right)=x-1< =>x^2-x=x-1\)

\(< =>x^2-x-x+1=0< =>x\left(x-1\right)-\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(x-1\right)=0< =>x=1\)

\(c,5x\left(x-1\right)=1-x< =>5x^2-5x=1-x\)

\(< =>5x^2-5x+x-1=0< =>5x^2-4x-1=0\)

\(< =>5x^2-5x+x-1=0< =>5x\left(x-1\right)+x-1=0\)

\(< =>\left(5x+1\right)\left(x-1\right)=0< =>\orbr{\begin{cases}5x+1=0\\x-1=0\end{cases}}\)

\(< =>\orbr{\begin{cases}5x=-1\\x=1\end{cases}< =>\orbr{\begin{cases}x=-\frac{1}{5}\\x=1\end{cases}}}\)

\(d,\left(3x-4\right)^2-\left(x+1\right)^2=0\)

\(< =>9x^2-24x+16-x^2-2x-1=0\)

\(< =>8x^2-26x+15=0< =>8\left(x^2-\frac{13}{4}x+\frac{169}{64}\right)-\frac{2082}{64}=0\)

\(< =>\left(x-\frac{13}{8}\right)^2=\frac{2082}{512}=\frac{2082}{16\sqrt{2}}\)

\(< =>\orbr{\begin{cases}x-\frac{13}{8}=\frac{\sqrt{2082}}{4\sqrt[4]{2}}\\x-\frac{13}{8}=-\frac{\sqrt{2082}}{4\sqrt[4]{2}}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{13}{8}+\frac{\sqrt{2082}}{4\sqrt[4]{2}}\\x=\frac{13}{8}-\frac{\sqrt{2082}}{4\sqrt[4]{2}}\end{cases}}\)(nghiệm vô tỉ)

5 tháng 7 2018

2/

a/ \(25x^2-1=0\)

<=> \(\left(5x\right)^2-1=0\)

<=> \(\left(5x-1\right)\left(5x+1\right)=0\)

<=> \(\orbr{\begin{cases}5x-1=0\\5x+1=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=-\frac{1}{5}\end{cases}}\)

b/ \(4\left(x-1\right)^2-9=0\)

<=> \(\left[2\left(x-1\right)\right]^2-3^2=0\)

<=> \(\left(2x-2\right)^2-3^2=0\)

<=> \(\left(2x-2-3\right)\left(2x-2+3\right)=0\)

<=> \(\left(2x-5\right)\left(2x+1\right)=0\)

<=> \(\orbr{\begin{cases}2x-5=0\\2x+1=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{1}{2}\end{cases}}\)

c/ \(\frac{1}{4}-9\left(x+1\right)^2=0\)

<=> \(\left(\frac{1}{2}\right)^2-\left[3\left(x-1\right)\right]^2=0\)

<=> \(\left(\frac{1}{2}\right)^2-\left(3x-3\right)^2=0\)

<=> \(\left(\frac{1}{2}-3x+3\right)\left(\frac{1}{2}+3x-3\right)=0\)

<=> \(\left(\frac{7}{2}-3x\right)\left(-\frac{5}{2}+3x\right)=0\)

<=> \(\orbr{\begin{cases}\frac{7}{2}-3x=0\\-\frac{5}{2}+3x=0\end{cases}}\)<=> \(\orbr{\begin{cases}3x=\frac{7}{2}\\3x=\frac{5}{2}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{5}{6}\end{cases}}\)

d/ \(\frac{1}{16}-\left(2x+\frac{3}{4}\right)^2=0\)

<=> \(\left(\frac{1}{4}\right)^2-\left(2x+\frac{3}{4}\right)^2=0\)

<=> \(\left(\frac{1}{4}-2x-\frac{3}{4}\right)\left(\frac{1}{4}+2x+\frac{3}{4}\right)=0\)

<=> \(\left(-\frac{1}{2}-2x\right)\left(1+2x\right)=0\)

<=> \(2\left(-\frac{1}{4}-x\right)\left(1+2x\right)=0\)

<=> \(\orbr{\begin{cases}-\frac{1}{4}-x=0\\1+2x=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{1}{2}\end{cases}}\)

8 tháng 7 2018
Còn Bài 1 nữa, nhờ các bạn giúp với
17 tháng 9 2018

\(a)\)\(x^3-x^2-x+1=0\)

\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)

Vậy \(x=1\) hoặc \(x=-1\)

Chúc bạn học tốt ~ 

17 tháng 9 2018

a) x3-x2-x+1 = 0 \(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)\(\Leftrightarrow x^2-1=0\)hoặc x-1=0 

\(\Leftrightarrow x=1\)