K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

\(x+\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}=1\)

\(x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}=1\)

\(x+1-\frac{1}{16}=1\)

\(x+\frac{15}{16}=1\)

\(x=1-\frac{15}{16}\)

\(x=\frac{1}{16}\)

3 tháng 8 2017

Đặt \(A=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)

\(1A=1-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}\right)-\dfrac{1}{22}\)\(1A=1-\dfrac{1}{22}\)

\(1A=\dfrac{22}{22}-\dfrac{1}{22}\)

\(1A=\dfrac{21}{22}\)

\(\dfrac{21}{22}\) không thể rút gọn

3 tháng 8 2017

\(A=\dfrac{1}{1\cdot2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{6}{16\cdot22}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}\\ =1-\dfrac{1}{22}\\ =\dfrac{21}{22}\)

Vậy \(A=\dfrac{21}{22}\)

1 tháng 8 2017

\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{x\left(x+4\right)}=\frac{43}{552}\)

\(\Leftrightarrow\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{x}-\frac{1}{x+4}\right)=\frac{43}{552}\)

\(\Leftrightarrow\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{x+4}\right)=\frac{43}{552}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{43}{552}\div\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{43}{138}\Leftrightarrow\frac{1}{x+4}=\frac{1}{3}-\frac{43}{138}\)

\(\Leftrightarrow\frac{1}{x+4}=\frac{1}{46}\Leftrightarrow x+4=46\Rightarrow x=46-4=42\)

Vậy x = 42 

1 tháng 8 2017

  \(s=\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{x\left(x+4\right)}=\)\(\frac{43}{552}\)

\(\Rightarrow S=\frac{4}{4}\left(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{x\left(x+4\right)}\right)=\frac{43}{552}\)

\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{43}{552}\)

\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3}-\frac{4}{7}+\frac{4}{7}-\frac{4}{11}+...+\frac{4}{x}-\frac{4}{x+4}\right)=\frac{43}{552}\)

\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3}-\frac{4}{x+4}\right)=\frac{43}{552}\)

\(\Rightarrow\frac{4}{3}-\frac{4}{x+4}=\frac{43}{552}:\frac{1}{4}\)

\(\frac{\Rightarrow4}{3}-\frac{4}{x+4}=\frac{43}{138}\)

\(\frac{\Rightarrow4}{x+4}=\frac{4}{3}-\frac{43}{138}=\frac{47}{46}\)

\(\Rightarrow x+4=4:\frac{47}{46}=\frac{184}{47}\)

\(\Rightarrow x=\frac{184}{47}-4=\frac{-4}{47}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{29}\)

=1-1/29

=28/29

25 tháng 3 2022

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)

\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)

\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)

\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)

 

25 tháng 3 2022

thanks youhehe

17 tháng 7 2018

\(A=\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{103.107}\)

\(A=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{103.107}\right)\)

\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{103}-\frac{1}{107}\right)\)

\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{107}\right)\)

\(A=\frac{1}{4}.\frac{104}{321}\)

\(A=\frac{26}{321}\)

_Chúc bạn học tốt_

17 tháng 7 2018

\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{103}-\frac{1}{107}\)

\(A=\frac{1}{3}-\frac{1}{107}=\frac{104}{321}\)

6 tháng 4 2018

Câu 1:

A)

a) Để \(\frac{-5}{n-2}\)đạt giá trị nguyên thì \(-5⋮n-2\)

Vì \(-5⋮n-2\Rightarrow n-2\inƯ\left(-5\right)=\left(\pm1;\pm5\right)\) 

Ta có bảng giá trị:

n-215-1-5
n371-3

Đối chiếu điều kiện \(n\inℤ\Rightarrow n\in\left(3;7;1;-3\right)\)

Đến câu b,c cậu cũng lí luận để chứng minh tử phải chia hết cho mẫu, còn tớ chỉ cần tách và đưa ra kết quả thôi nhé

b) Ta có:                   \(n-5⋮n+1\)

\(\Rightarrow\left(n+1\right)-6⋮n+1\)

\(\Rightarrow-6⋮n+1\)

Vì \(-6⋮n+1\Rightarrow n+1\inƯ\left(-6\right)=\left(\pm1;\pm2;\pm3;\pm6\right)\)

Ta có bảng giá trị:

n+11236-1-2-3-6
20125-2-3-47

Đối chiếu điều kiện \(n\inℤ\Rightarrow\left(0;1;2;5;-2;-3;-4;-7\right)\)

c) Ta có:                      \(3n+7⋮n-1\)

\(\Rightarrow3\left(n-1\right)+10⋮n-1\)

\(\Rightarrow10⋮n-1\)

Vì \(10⋮n-1\Rightarrow n-1\inƯ\left(10\right)=\left(1;-1;2;-2;5;-5;10;-10\right)\)

Ta có bảng giá trị:

n-11-12-25-510-10
2203-16-411-9

Đối chiếu điều kiện \(n\inℤ\Rightarrow n\in\left(2;0;3;-1;6;-4;11;-9\right)\)

B)

a) Gọi d là ƯC (2n+1;2n+2) \(\left(d\inℤ\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+2⋮d\end{cases}}\)    \(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\)     \(\Rightarrow1⋮d\)

                                                                                                            \(\Rightarrow d=1\)

\(\Rightarrow\)2n+1 và 2n+2 nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{2n+2}\)là phân số tối giản

b) Gọi d là ƯC(2n+3;2n+5) \(\left(d\inℤ\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+5⋮d\end{cases}}\)        \(\Rightarrow\left(2n+5\right)-\left(2n+3\right)⋮d\) \(\Rightarrow2⋮d\) \(\Rightarrow d=\left(1;2\right)\)

Vì 2n+3 và 2n+5 không chia hết cho 2

\(\Rightarrow d=1\)

\(\Rightarrow\)2n+5 và 2n+3 nguyên tố cùng nhau

\(\Rightarrow\frac{2n+3}{2n+5}\)là phân số tối giản

19 tháng 4 2016

Để M có giá trị nguyên thì 6n-1 chia hết 3n+2

6n+4 - 5 chia hết cho 3n+2

2(3n+2)-5 chia hết 3n+2

=> 5 chia hết 3n+2

=> 3n+2 thuộc Ư(5) 

19 tháng 4 2016

Để M có giá trị nguyên thì 6n-1 chia hết 3n+2

6n+4 - 5 chia hết cho 3n+2

2(3n+2)-5 chia hết 3n+2

=> 5 chia hết 3n+2

=> 3n+2 thuộc Ư(5) ={-1;1;-5;5}

Ta có: 

3n+2-11-55
3n-3-1-73
n-1Loại loại