Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b)\) Ta có: \(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45\text{ }}\)
\(\Leftrightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(\Leftrightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{45}\)
\(\Leftrightarrow x-\frac{37}{45}=1\)
\(\Leftrightarrow x=1+\frac{37}{45}\)
\(\Leftrightarrow x=\frac{82}{45}\)
Vậy \(x=\frac{82}{45}\)
ở câu 1 ở mỗi phẫn số chúng ta cộng thêm 1, tổng là ta cộng thêm 5. Lấy 5 + -5=0. Rồi ta được tất cả tử là x+200,đặt chung ra ngoài,từ đó tính x=-200
đặt \(A=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+........+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\frac{1}{2}A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+........+\frac{1}{x.\left(x+1\right)}=\frac{2}{9}.\frac{1}{2}\)
\(\frac{1}{2}A=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+........+\frac{1}{x.\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{2}A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{2}A=\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)
\(\Rightarrow x+1=18\)
\(\Rightarrow x=18-1\)
\(\Rightarrow x=17\)
vậy \(x=17\)
a) Đặt \(A=\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+.....+\frac{1}{\left(x-2\right)x}+\frac{1}{x\left(x+2\right)}\)
=> \(3A=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+.....+\frac{3}{\left(x-2\right)x}+\frac{3}{x\left(x+2\right)}\)
=> \(3A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{\left(x-2\right)}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+2}\)
=> 3A = \(\frac{1}{5}-\frac{1}{x+2}\)
=> A = \(\frac{1}{15}-\frac{1}{3x+6}\)
Mà : A = \(\frac{101}{1540}\)
=> \(\frac{1}{15}-\frac{1}{3x+6}=\frac{101}{1540}\)
=> \(\frac{1}{3x+6}=\frac{1}{15}-\frac{101}{1540}=\frac{1}{924}\)
=> 3x + 6 = 924
=> 3(x + 2) = 924
=> x + 2 = 308
=> x = 306
a) Ta có: \({{1} \over x(x+2)}= {{1} \over 3}({{1} \over x}-{{1} \over x+2})\) \(\Rightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over 8}+{{1} \over 8}-...+{{1} \over x}-{{1} \over x+2})={{101} \over 1540} \)\(\Leftrightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over x+2})={{101} \over 1540}\)\(\Leftrightarrow\)x+2 = 308 \(\Leftrightarrow\) x=306 Lúc sau lm hơi tắt mọi người thông cảm
Ta có :
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\) ( cái đề hình như có 1 phân số \(\frac{2}{9}\) đúng không bạn )
\(\Leftrightarrow\)\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Leftrightarrow\)\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{18}\)
\(\Leftrightarrow\)\(x+1=1:\frac{1}{18}\)
\(\Leftrightarrow\)\(x+1=18\)
\(\Leftrightarrow\)\(x=18-1\)
\(\Leftrightarrow\)\(x=17\)
Vậy \(x=17\)
Chúc bạn học tốt ~
a) \(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}..1\frac{1}{99}=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{100}{99}=\frac{2.2.3.3.4.4...10.10}{1.3.2.4.3.5...9.11}=\frac{\left(2.3.4...10\right)\left(2.3.4...10\right)}{\left(1.2.3...9\right)\left(3.4.5...11\right)}\)
\(\frac{10.2}{1.11}=\frac{20}{11}\)
b) \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).\left(1-\frac{1}{25}\right).\left(1-\frac{1}{36}\right)=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.\frac{35}{36}\)
\(=\frac{1.3.2.4.3.5.4.6.5.7}{2.2.3.3.4.4.5.5.6.6}=\frac{\left(1.2.3.4.5\right).\left(3.4.5.6.7\right)}{\left(2.3.4.5.6\right).\left(2.3.4.5.6\right)}=\frac{1.7}{6.2}=\frac{7}{12}\)
c) \(\frac{99}{98}-\frac{98}{97}+\frac{1}{97.98}=\frac{99}{98}-\frac{98}{97}+\frac{1}{97}-\frac{1}{98}=\left(\frac{99}{98}-\frac{1}{98}\right)+\left(-\frac{98}{97}+\frac{1}{97}\right)=1-1=0\)
d) \(3\frac{1}{11}.\frac{27}{36}.1\frac{6}{7}.2\frac{4}{9}=\frac{34}{11}.\frac{3}{4}.\frac{13}{7}.\frac{22}{9}=\frac{34.3.13.22}{11.4.7.9}=\frac{34.13}{11.2.7.3}=\frac{442}{462}=\frac{221}{231}\)
a: x/5=32/80
nên x/5=2/5
hay x=2
13/x=26/30
nên 13/x=13/15
hay x=15
-x/7=22/-77
=>x/7=2/7
hay x=2
b: x/9=28/36
=>x/9=7/9
hay x=7
-10/x=50/55
=>-10/x=10/11
hay x=-11
Theo đầu bài ta có:
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+...+\frac{1}{x\left(x+1\right)}\right)\cdot2=\frac{2}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)
\(\Rightarrow x+1=18\)
\(\Rightarrow x=17\)