\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\dfrac{2015^2}{2016^2}}+\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>|x-1|+|x-2|=2016

TH1: x<1

Pt sẽ là 1-x+2-x=2016

=>-2x+3=2016

=>-2x=2013

=>x=-2013/2(nhận)

TH2: 1<=x<2

Pt sẽ là x-1+2-x=2016

=>1=2016(loại)

TH3: x>=2

Pt sẽ là 2x-3=2016

=>2x=2019

=>x=2019/2(nhận)

10 tháng 6 2017

\(\dfrac{\sqrt{x-2015}-1}{x-2015}+\dfrac{\sqrt{y-2016}-1}{y-2016}=\dfrac{1}{2}\)

Điều kiện \(\left\{{}\begin{matrix}x>2015\\y>2016\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x-2015}}-\dfrac{1}{x-2015}+\dfrac{1}{\sqrt{y-2016}}-\dfrac{1}{y-2016}=\dfrac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-2015}}=a>0\\\dfrac{1}{\sqrt{y-2016}}=b>0\end{matrix}\right.\) thì ta có:

\(a-a^2+b-b^2=\dfrac{1}{2}\)

\(\Leftrightarrow\left(2a^2-2a+\dfrac{1}{2}\right)+\left(2b^2-2b+\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}a-\dfrac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2}b-\dfrac{1}{\sqrt{2}}\right)^2=0\)

\(\Leftrightarrow a=b=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-2015}}=\dfrac{1}{4}\\\dfrac{1}{\sqrt{y-2016}}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2019\\y=2020\end{matrix}\right.\)

11 tháng 6 2017

Bạn ơi, a=b=\(\dfrac{1}{2}\) nhé! Bạn tính nhầm rồi!!

23 tháng 6 2017

Ta thấy: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{2015}}-\dfrac{1}{\sqrt{2016}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2016}}=\dfrac{\sqrt{2016}-1}{\sqrt{2016}}\)

28 tháng 6 2019

mình chưa hiểu dòng đầu tiên, bạn giải thích cho mình được không?

8 tháng 6 2017

Bài này dài lắm, mình học qua rùi cũng bỏ xó luôn ....... Ko biết còn quyển vở ko để xem lại

8 tháng 6 2017

giúp đi

30 tháng 10 2017

a) Ta có: \(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}=\)

\(\dfrac{2015-1}{\sqrt{2015}}+\dfrac{2014+1}{\sqrt{2014}}=\sqrt{2015}-\dfrac{1}{\sqrt{2015}}+\sqrt{2014}+\dfrac{1}{\sqrt{2014}}\)

\(\left(\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}>0\right)\)\(>\sqrt{2014}+\sqrt{2015}\)

Vậy \(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}>\sqrt{2014}+\sqrt{2015}\)

27 tháng 8 2016

Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P

20 tháng 9 2016

x+y =0

=> P = 1

24 tháng 11 2016

Ta có

\(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}=\frac{1}{2}\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}\)

\(=\frac{1}{2}.\frac{\left(\sqrt{2}-1\right)}{1}=\frac{\sqrt{2}-1}{2}\)

Ta lại có

\(x+1=\frac{\sqrt{2}-1}{2}+1=\frac{\sqrt{2}-1+2}{2}=\frac{\sqrt{2}+1}{2}\)

\(\Rightarrow x\left(x+1\right)=\frac{\sqrt{2}-1}{2}.\frac{\sqrt{2}+1}{2}=\frac{1}{4}\)

Ta lại có

\(4x^4+4x^3-5x^2+5x-2=4x^3\left(x+1\right)-5x^2+5x-2\)

\(=x^2-5x^2+5x-2=-4x^2\left(x+1\right)+9x-2\)

\(=-1+9x-2=-3+\frac{\sqrt{2}-1}{2}=\frac{\sqrt{2}-7}{2}\)

24 tháng 11 2016

Giải tới đây thì mình nghĩ là bạn sai đề rồi. Bạn xem lại đề nhé

7 tháng 7 2016

Với mọi n>0 ta có:\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng đẳng thức trên vào D ta được:

\(D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

\(=1-\frac{1}{\sqrt{2016}}=1-\frac{\sqrt{2016}}{2016}=\frac{2016-\sqrt{2016}}{2016}\)