Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)(ĐK: \(x\ge0,x\ne1\))
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(A=\frac{5}{\sqrt{x}}\)
\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{5}{\sqrt{x}}\)
\(\Rightarrow x=5\left(x+\sqrt{x}+1\right)\)
\(\Leftrightarrow4x+5\sqrt{x}+1=0\)(vô nghiệm do \(x\ge0\))
\(A-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)(vì \(x\ne1\))
Do đó \(A< \frac{1}{3}\).
\(2,\)
\(a,\sqrt{x^2-4x+3}=3\)
\(\Rightarrow x^2-4x+3=9\)
\(\Rightarrow x^2-4x-6=0\)
\(\Rightarrow\left(x-2\right)^2=10\)
\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{10}\\x-2=-\sqrt{10}\end{cases}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}}\)
1/ Ta có
\(N+\sqrt{x}-1=\frac{3}{\sqrt{x}-2}+\sqrt{x}-1\)
\(=\frac{3}{\sqrt{x}-2}+\sqrt{x}-2+1\)
\(\ge2\sqrt{3}+1\)
Dấu = xảy ra khi \(\frac{3}{\sqrt{x}-2}=\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2=\sqrt{3}\)
\(\Leftrightarrow\)x = (\(\sqrt{3}+2\))2
a: \(P=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1+\sqrt{x}}{x+1}\)
\(=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)