Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(0< x< 2x-1\Leftrightarrow x>\frac{1}{2}.\)
b)\(0< x< x+1\Leftrightarrow x>0.\)
b: \(\sqrt{x-1}< x+3\)
nên \(\left\{{}\begin{matrix}x-1>=0\\\left(x-1\right)^2< \left(x+3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\x^2-2x+1-x^2-6x-9< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\-8x-8< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\-8x< 8\end{matrix}\right.\Leftrightarrow x>=1\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=6\\x^2-6x+9>x^2-12x+36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=6\\6x>27\end{matrix}\right.\Leftrightarrow x>=6\)
Bài 2:
\(=\sqrt{\left(x-y\right)^2}=\left|x-y\right|=y-x\)
a) Bpt luôn đúng với mọi x không âm
b) đk: \(x\le2\)
Có: \(\sqrt{x}>\sqrt{2-x}\Leftrightarrow x>2-x\)
\(\Leftrightarrow2x>2\Leftrightarrow x>1\)
Kết hợp với đk, ta được: \(1< x\le2\)
\(y^2=2+2\sqrt{1-x^2}\)
Do \(\sqrt{1-x^2}\ge0\)
Nên \(y^2\ge2\)
Dấu "=" xảy ra khi :x=1 hoặc x=-1
\(\sqrt{x-1}\le x\)\(-1\)
\(\rightarrow x-1\le\left(x-1\right)^2\)\(\leftrightarrow x-1\le x^2-2x+1\)
\(\Rightarrow x^2-3x+2\ge0\)\(\Rightarrow\left(x-1\right)\left(x-2\right)\ge0\)'
TH1. \(\hept{\begin{cases}x-1\ge0\\x-2\ge0\end{cases}\leftrightarrow\hept{\begin{cases}x\ge1\\x\ge2\end{cases}\rightarrow}x\ge2}\)
TH2 \(\hept{\begin{cases}x-1\le0\\x-2\le0\end{cases}\leftrightarrow\hept{\begin{cases}x\le1\\x\le2\end{cases}\Rightarrow}x\le1}\)
vậy: \(x\ge2;x\le1\)
~~~ Học Tốt ~~~
ĐKXD : \(x-1\ge0\rightarrow x\ge1\)
---> loại trường hợp 2....
vậy \(x\ge2\)
~Học tốt~