Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
ĐKXĐ: \(x\ge0\) cho tất cả các câu
a) x = 6 (thỏa mãn)
b) vô nghiệm vì VT≥0 mà VP < 0
c) x = 5 (thỏa mãn)
d) \(\sqrt{x}=\left|-31\right|=31\)
x = 961(thỏa mãn)
bài 2 tương tự
Bài 2:
a) \(x^2-23=0\)
\(\Rightarrow x^2=0+23\)
\(\Rightarrow x^2=23\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{23}\\x=-\sqrt{23}\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{23};-\sqrt{23}\right\}.\)
b) \(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7-0\)
\(\Rightarrow\sqrt{x}=7\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{7}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{49}\)
\(\Rightarrow x=49\)
Vậy \(x=49.\)
Chúc bạn học tốt!
1. a)\(2\&\sqrt{5}\)
\(2=\sqrt{4}\)
=> \(2< \sqrt{5}\)
b)\(5\&\sqrt{23}\)
\(5=\sqrt{25}\)
=> \(5>\sqrt{23}\)
c) \(\sqrt{23}+\sqrt{13}\&\sqrt{83}\)
\(\left(\sqrt{23}+\sqrt{13}\right)^2=36+2\sqrt{229}\)
\(\left(\sqrt{83}\right)^2=83\)
\(\Rightarrow36+2\sqrt{299}< 83\)
=> \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)
2. a) \(\sqrt{x}=5;x\ge0\)
=> x = 25
b) \(3\sqrt{x}=6;x\ge0\)
=> x = 4
c) trùng
d) \(3-\sqrt{3+1}=1\)
\(3-\sqrt{3+1}=3-2=1\)
1)
a)\(2=\sqrt{4}< \sqrt{5}\)
b) \(5=\sqrt{25}>\sqrt{23}\)
c) \(\sqrt{83}>\sqrt{81}=9\)
\(\left\{{}\begin{matrix}\sqrt{23}< \sqrt{25}=5\\\sqrt{13}< \sqrt{16}=4\end{matrix}\right.\)
\(\sqrt{23}+\sqrt{13}< 4+5=9\)
Vậy \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)
2) Ta có:
\(\sqrt{x}=5\Rightarrow x=25\)
\(3\sqrt{x}=6\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(3-\sqrt{3+1}=1\)
Nên:
\(3-2=1\)(luôn đúng)
a) \(-2\sqrt{x^2+1}=-8\)
=> \(\sqrt{x^2+1}=-8:\left(-2\right)\)
=> \(\sqrt{x^2+1}=4\)
=> \(x^2+1=16\)
=> \(x^2=16-1=15\)
=> \(\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
b) \(4+3\sqrt{x^2+2}=4\)
=> \(3\sqrt{x^2+2}=4-4=0\)
=> \(\sqrt{x^2+2}=0\)
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> ko có giá trị x t/m
c)\(\sqrt{x+1}=3\)
=> \(x+1=9\)
=> x = 9 - 1 = 8
d) TT trên
\(\sqrt{\left(x+1\right)^2}-2\sqrt{x+1}=0\)\(\Leftrightarrow\left|x+1\right|-2\sqrt{x+1}=0\)
\(\Leftrightarrow\left|x+1\right|=2\sqrt{x+1}\)\(\Leftrightarrow\left|x+1\right|^2=\left(2\sqrt{x+1}\right)^2\)
\(\Leftrightarrow x^2+2x+1=4x+4\)\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left(x-1\right)^2-4=0\)\(\Leftrightarrow\left(x-1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy ..............
a) \(x^2-2=0\)
\(\Rightarrow x^2-\left(\sqrt{2}\right)^2=0\)
\(\Rightarrow\left(x-\sqrt{2}\right).\left(x+\sqrt{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+\sqrt{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+\sqrt{2}\\x=0-\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}.\)
b) \(x^2+\frac{7}{4}=\frac{23}{4}\)
\(\Rightarrow x^2=\frac{23}{4}-\frac{7}{4}\)
\(\Rightarrow x^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}.\)
c) \(\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)^2=0^2\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=0+1\)
\(\Rightarrow x=1\)
Vậy \(x=1.\)
g) \(\sqrt{x}=0\)
\(\Rightarrow x=0\)
Vậy \(x=0.\)
h) \(\sqrt{x}=4\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{4}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{16}\)
\(\Rightarrow x=16\)
Vậy \(x=16.\)
i) \(\sqrt{x}-\frac{1}{7}=0\)
\(\Rightarrow\sqrt{x}=0+\frac{1}{7}\)
\(\Rightarrow\sqrt{x}=\frac{1}{7}\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{\frac{1}{7}}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\frac{1}{49}}\)
\(\Rightarrow x=\frac{1}{49}\)
Vậy \(x=\frac{1}{49}.\)
Chúc bạn học tốt!
\(a)\) ĐKXĐ : \(x\ge0\)
\(x=\sqrt{x}\)
\(\Leftrightarrow\)\(x-\sqrt{x}=0\)
\(\Leftrightarrow\)\(\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=1\)
\(b)\) ĐKXĐ : \(x\ge1\)
\(\sqrt{x-1}+2=3\)
\(\Leftrightarrow\)\(\sqrt{x-1}=1\)
\(\Leftrightarrow\)\(x-1=1\)
\(\Leftrightarrow\)\(x=2\)
Vậy \(x=2\)
\(c)\) ĐKXĐ : \(x\ge1\)
\(\sqrt{x-1}=x-1\)
\(\Leftrightarrow\)\(\sqrt{x-1}-\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(1-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\1-\sqrt{x-1}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=2\)
Chúc bạn học tốt ~
Anh Quyền à:
Đáp án như sau:
cau a, 47
câu b, 6/35
đúng 100%
tích đi
\(\sqrt{4}\)+x=\(\sqrt{16}\)+\(\sqrt{25}\)
2+x=4+5
2+x=9
x=9-2=7
12+63=6:x
75=6:x
6:x=75
x=6:75=0,08
Thứ nhất : là bài 3 bạn ghi đề bị thiếu .
Thứ hai : là mình đã tốn thời gian giải cho bạn rồi nên đừng tiếc thời gian để k cho mình nếu mình đúng
Thứ 3 : mong các thành phần chuyên sao chép lời giải người khác và đăng lên , thậm chí là giống như đúc đừng sao chép bài của mình nhé .
Giải :
1, Ta có : \(y\sqrt{x}-3y=\sqrt{x}+1\Rightarrow y\left(\sqrt{x}-3\right)=\sqrt{x}+1\)
\(\Rightarrow y\left(\sqrt{x}-3\right)-\left(\sqrt{x}+1\right)=0\Rightarrow y\left(\sqrt{x}-3\right)-\sqrt{x}-1=0\)
\(y\left(\sqrt{x-3}\right)-\sqrt{x}+3-4=0\Rightarrow y\left(\sqrt{x-3}\right)-\left(\sqrt{x-3}\right)-4=0\)
\(\left(\sqrt{x}-3\right)\left(y-1\right)-4=0\)
\(\left(\sqrt{x}-3\right)\left(y-1\right)=4\)
Vì y thuộc Z nên y-1 thuộc Z => \(\left(\sqrt{x}-3\right)\in Z\)
Ta có bảng :
\(\sqrt{x}-3\) | \(1\) | \(4\) | \(-1\) | \(-4\) | \(2\) | \(-2\) |
\(y-1\) | \(4\) | \(1\) | \(-4\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(1\) |
\(y\) | \(5\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(-1\) |
Vậy các cặp x,y thỏa mãn là (2;5) và (1;-1)
2,Ta có \(y\sqrt{x}-\sqrt{x}=1-y\Rightarrow\sqrt{x}\left(y-1\right)+y-1=0\Rightarrow\left(y-1\right)\left(\sqrt{x}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\\sqrt{x}+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x\in\varnothing\end{cases}}}\)
Vậy \(y=1,x\in\varnothing\)
Không hẳn là cách khác nhưng cứ xem cho vui=)
1/\(y\left(\sqrt{x}-3\right)=\sqrt{x}+1\Leftrightarrow y=1+\frac{4}{\sqrt{x}-3}\)
Để y nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Bài toán trở về dạng quen thuộc.
2/ \(\sqrt{x}\left(y-1\right)=1-y\)
Với y = 1 thì \(\sqrt{x}.0=0\) (luôn đúng)
Với y khác 1:
\(\sqrt{x}\left(y-1\right)=1-y\Rightarrow\sqrt{x}=\frac{1-y}{y-1}=\frac{-1\left(y-1\right)}{y-1}=-1\)(vô lí vì \(\sqrt{x}\ge0\))
Vậy x tùy ý; y = 1
3/ Thiếu đề.
\(\sqrt{x-1}-2=23\)
\(\sqrt{x-1}=23+2\)
\(\sqrt{x-1}=25\)
\(\sqrt{x-1}=625\)
\(x-1=625\)
\(x=625+1\)
\(x=626\)
\(\Rightarrow\sqrt{x-1}=25\Rightarrow x+1=25^2=625\)
\(\Rightarrow x=624\)