K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

(x2+2x+4)(2-x)+x(x-3)(x+4)-x2+24=0

<=> 8-x3+(x2-3x)(x+4)-x2+24=0

<=> 8-x3+x3-3x2+4x2-12x-x2+24=0

<=> -12x+32=0

<=> 12x=32

<=> \(x=\frac{32}{12}=\frac{8}{3}\)

24 tháng 10 2021

Gửi bạn nè. Chúc bạn học tốt !

undefined

25 tháng 5 2021

Với x > 0, áp dụng bất đẳng thức AM-GM ta có :

\(x+2021\ge2\sqrt{2021x}\Rightarrow\left(x+2021\right)^2\ge8084x\)

\(\Rightarrow\frac{1}{\left(x+2021\right)^2}\le\frac{1}{8084x}\Leftrightarrow\frac{x}{\left(x+2021\right)^2}\le\frac{1}{8084}\)

Dấu "=" xảy ra <=> x = 2021

Vậy ...

\(\frac{x}{\left(x+2021\right)^2}\left(x>0\right)\)

\(=\frac{1}{\frac{1}{x}\left(x+2021\right)^2}\)

\(=\frac{1}{\left(\frac{x+2021}{\sqrt{x}}\right)^2}\)

\(=\frac{1}{ \left(\sqrt{x}+\frac{2021}{\sqrt{x}}\right)^2}\)

Ta có : 

\(\sqrt{x}+\frac{2021}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{2021}{\sqrt{x}}}=2\sqrt{2021}\)

\(\rightarrow\left(\sqrt{x}+\frac{2021}{\sqrt{x}}\right)^2\ge4.2021=8084\)

\(\rightarrow\frac{1}{\left(\sqrt{x}+\frac{2021}{\sqrt{x}}\right)^2}\le\frac{1}{8084}\)

Dấu ''='' xảy ra \(\Leftrightarrow\sqrt{x}=\frac{2021}{\sqrt{x}}\Leftrightarrow x=2021\)

Vậy Max \(\left(\frac{x}{\left(x+2021\right)^2}\right)=\frac{1}{8084}\Leftrightarrow x=2021\)

5 tháng 8 2021

a) = 5( x2 - 9y2 - 6y - 1 ) = 5[ x2 - ( 9y2 + 6y + 1 ) ] = 5[ x2 - ( 3y + 1 )2 ] = 5( x - 3y - 1 )( x + 3y + 1 )

b) = 125x3 - 25x2 + 15x2 - 3x + 5x - 1 = 25x2( 5x - 1 ) + 3x( 5x - 1 ) + ( 5x - 1 ) = ( 5x - 1 )( 25x2 + 3x + 1 )

c) = 5( x - 7 ) + a( x - 7 ) = ( x - 7 )( a + 5 )

d) = ( a - b )2 + ( a - b ) = ( a - b )( a - b + 1 )

e) = ax2 + a - a2x - x = ax( a - x ) + ( a - x ) = ( a - x )( ax + 1 )

f) = ( 10x )2 - ( x2 + 25 )2 = ( 10x - x2 - 25 )( 10x + x2 + 25 ) = -( x - 5 )2( x + 5 )2

28 tháng 7 2021

\(C=\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

Dấu ''='' xảy ra khi \(x=1;y=-1\)

Vậy GTNN C là 0 khi x = 1 ; y = -1 

28 tháng 11 2021

g) \(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)

f) \(x^2-25-2xy+y^2=\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)

e) \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

d) \(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

24 tháng 10 2021
62124+269666
24 tháng 10 2021

\(4x^2-25+\left(2x+7\right).\left(5-2x\right)\)

\(=\left(2x+5\right).\left(2x-5\right)-\left(2x+7\right).\left(2x-5\right)\)

\(=\left(2x+5-2x-7\right).\left(2x-5\right)\)

\(=-2.\left(2x-5\right)\)

\(a^2x^2-a^2x^2-b^2x^2+b^2y^2\)

\(=a^2.\left(x^2-y^2\right)-b^2.\left(x^2-y^2\right)\)

\(=\left(a^2-b^2\right).\left(x^2-y^2\right)\)

\(=\left(a-b\right).\left(a+b\right).\left(x-y\right).\left(x+y\right)\)

\(x^2-y^2+12y-36\)

\(=x^2-\left(y^2-12y+36\right)\)

\(=x^2-\left(y-6\right)^2\)

\(=\left(x-y+6\right).\left(x+y-6\right)\)

\(\left(x+2\right)^2-x^2+2x-1\)

\(=\left(x+2\right)^2-\left(x^2-2x+1\right)\)

\(=\left(x+2\right)^2-\left(x-1\right)^2\)

\(=[x+2-\left(x-1\right)].[x+2+\left(x-1\right)]\)

\(=\left(x+2-x+1\right).\left(x+2+x-1\right)\)

\(=3.\left(2x+1\right)\)

\(16x^2-y^2=\left(4x\right)^2-y^2=\left(4x-y\right).\left(4x+y\right)\)

\(1+27x^3=1^3+\left(3x\right)^3=\left(1+3x\right).\left(1-3x+9x^2\right)\)