Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-7x-6=0\)
\(x^3-3x^2+3x^2+2x-9x-6=0\)
\(x^2.\left(x-3\right)+3x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\left(x+3\right).\left(x^2+3x+2\right)=0\Rightarrow\left(x-3\right).\left(x^2+3x+x+2\right)=0\)
\(\Rightarrow\left(x-3\right).\left(x+1\right).\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\text{hoặc }x=-2\)
Câu 1.
B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )
= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2
= 18x2 + 18x + 3
| x | = 2 => x = ±2
Với x = 2 => B = 18.22 + 18.2 + 3 = 111
Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39
C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )
= 4x2 + 4xy + y2 + xy - xz - y2 + yz
= 4x2 + 5xy - xz + yz
Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9
Câu 2.
Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )
Theo đề bài ta có :
( a + 1 )( a + 2 ) - a( a + 1 ) = 50
<=> a2 + 3a + 2 - a2 - a = 50
<=> 2a + 2 = 50
<=> 2a = 48
<=> a = 24 ( tmđk )
=> a + 1 = 25 ; a + 2 = 26
Vậy ba số cần tìm là 24 ; 25 ; 26
Câu 3.
Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4
( x + y )( x3 - x2y + xy2 - y3 )
= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4
= x4 - y4 ( đpcm )
Câu 1 :
\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)
\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)
\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)
\(=18x^2-4x-7\)
Với \(|x|=2\Rightarrow x=\pm2\)
Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)
Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)
Câu b tương tự
Câu 2 :
Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .
Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)
\(\Leftrightarrow2a=48\)
\(\Leftrightarrow a=24\)
Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .
Câu 3 :
Ta có :
\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)
\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)
\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)
\(=x^4-y^4\)
=> đpcm
1a) ( x - 2 )( x2 + 2x + 4 ) - x( x - 1 )( x + 1 ) + 3
= x3 - 8 - x( x2 - 1 ) + 3
= x3 - 8 - x3 + x + 3
= x - 5
b) Với x = -1/2 => Giá trị của biểu thức = -1/2 - 5 = -11/2
2a) 3x( 5x2 - 2xy2 + y ) = 15x3 - 6x2y2 + 3xy
b) ( x + y )( x2 - xy + y2 ) = x3 + y3
3) 16x2 - ( 4x - 5 )2 = 15
<=> 16x2 - ( 16x2 - 40x + 25 ) = 15
<=> 16x2 - 16x2 + 40x - 25 = 15
<=> 40x - 25 = 15
<=> 40x = 40
<=> x = 1
Ta có: \(x^2+x+1>0\) và \(5x^2+11x+7>0\)với mọi \(x\)
nên \(\left(x^3+x^2+x+1\right)-\left(x^2+x+1\right)\)\(<\) \(x^3+x^2+x+1\) \(<\) \(\left(x^3+x^2+x+1\right)+\left(5x^2+11x+7\right)\)
Do đó: \(x^3\) \(<\) \(y^3\) \(<\left(x+2\right)^3\)
Suy ra: \(y^3=\left(x+1\right)^3\)
Từ đó, suy ra \(x\left(x+1\right)=0\)
Vậy, \(x;y\in\left\{\left(0;1\right);\left(-1;0\right)\right\}\)
\(a,\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x\left(x-3\right)\)
\(=\left(x-2\right)^3-x\left(x^2-1\right)+6x^2-18x\)
\(=x^3-6x^2+12x-8-x^3+x+6x^2-18x\)
\(=-5x\)
Các câu còn lại lm tương tự nhé