\(\left(x+\frac{1}{2}\right)^{13}=\left(x+\frac{1}{2}\right)^{11}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x+\frac{1}{2}\right)^{13}=\left(x+\frac{1}{2}\right)^{11}\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^{13}-\left(x+\frac{1}{2}\right)^{11}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^{11}\left[\left(x+\frac{1}{2}\right)^2-1\right]=0\)

TH1 : \(x=-\frac{1}{2}\)

TH2 : \(\left(x+\frac{1}{2}\right)^2=1\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=1\\x+\frac{1}{2}=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)

12 tháng 7 2017

làm tiếp cái trước(ấn nhầm)

\(x=\frac{5}{42}-\frac{15}{28}\) 

\(x=\frac{5.4}{6.4.7}-\frac{15.6}{4.7.6}\)

\(x=\frac{20}{168}-\frac{90}{168}\)

\(x=\frac{-70}{168}\)

\(x=\frac{-5}{12}\)

2. 

12 tháng 7 2017

1.

 \(\frac{11}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{11}{13}\right)\)

\(\frac{11}{13}-\frac{5}{42}+x=-\frac{15}{28}+\frac{11}{13}\)

\(\frac{11}{13}-\frac{11}{13}-\frac{5}{42}+\frac{15}{28}=-x\)

20 tháng 9 2020

A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)

\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)

\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)

\(=\frac{1}{x+3}-\frac{1}{x+34}\)

\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)

\(\Rightarrow x=31\)

Vậy, x = 31 

20 tháng 9 2020

Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với    \(x,k\inℝ;x\ne0;x\ne-k\)

Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)

21 tháng 7 2019

\(5^{x+4}-3.5^{x+3}=2.5^{11}\)

\(5^{x+3}\left(5-3\right)=2.5^{11}\)

\(5^{x+3}.2=2.5^{11}\)

\(5^{x+3}=5^{11}\)

\(x+3=11\)

\(x=8\)

\(4^{x+3}-3.4^{x+1}=13.4^{11}\)

\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)

\(4^{x+1}.13=13.4^{11}\)

\(4^{x+1}=4^{11}\)

\(x+1=11\)

\(x=10\)

15 tháng 6 2016

a) Dễ thấy VT > 0;mà VT=VP

=>VP > 0 => 4x > 0=> x > 0

=>\(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)

=>BT đầu tương đương \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{6}\right)=4x\)

\(=>3x+1=4x=>x=1\)

15 tháng 6 2016

a)  Để đẳng thức xảy ra thì: x>0 (vì: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|>0\) )

Khi đó: \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)

=>\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)

<=>x=1

Vậy x=1

b)Điều kiện: \(x\ne-3;-10;-21;-34\)

\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

<=>\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

<=>\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

=>x+34-x-3=x

<=>x=31 (nhận)

Vậy x=31

1 tháng 9 2019

a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{18}\)

⇒ x + 1 = 18

⇒ x = 17

Vậy x = 17

b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)

\(1-\frac{1}{x+3}=\frac{147}{148}\)

\(\frac{1}{x+3}=1-\frac{147}{148}\)

\(\frac{1}{x+3}=\frac{1}{148}\)

⇒ x + 3 = 148

⇒ x = 145

Vậy x = 145