Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ f(x) = 0 => x2 + 4x - 5 = 0 => (x - 1)(x + 5) = 0 => x = 1 hoặc x = -5
Vậy x = 1 , x = -5
b/ f(x) > 0 => x2 + 4x - 5 > 0 => (x - 1)(x + 5) > 0 => x - 1 > 0 và x + 5 > 0 => x > 1 và x > -5 => x > 1
hoặc x - 1 < 0 và x + 5 < 0 => x < 1 và x < -5 => x < -5
Vậy x > 1 hoặc x < -5
c/ f(x) < 0 => x2 + 4x - 5 < 0 => (x - 1)(x + 5) < 0 => x - 1 > 0 và x + 5 < 0 => x > 1 và x < -5 => vô lí
hoặc x - 1 < 0 và x + 5 > 0 => x < 1 và x > -5 => -5 < x < 1
Vậy -5 < x < 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì \(\left|x\left(x^2-3\right)\right|\ge0\) nên \(x\ge0\)
Ta có : |x(x2 - 3)| = x
<=> x(x2 - 3) = x <=> x2 - 3 = x : x = 1 <=> x2 = 4
Vì x \(\ge\) 0 nên x = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Đa thứ f(x) có dạng : ax2+bx+c
Theo đề ta có: 25a+5b+c=25a-5b+c
<=>5b=-5b
=>b=0
Do đó f(x) phải có dạng ax2+c
Ta thấy ax2+c=a.(-x)2+c
=>f(x)=f(-x) với mọi x thuộc R
![](https://rs.olm.vn/images/avt/0.png?1311)
đk: \(\begin{cases}x^2-5x+6\ge0\\x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge3;x\le2\\x\ge1\end{cases}\) suy ra \(x\ge3;1\le x\le2\)
ta có \(\log_3^{\left(x^2-5x+6\right)}=\log_{\sqrt{3}}^{\frac{x-1}{2}}+\log_{\sqrt{3}}^{x-3}\Rightarrow\log_3^{\left(x^2-5x+6\right)}=\log_{\sqrt{3}}^{\left(x-3\right)\frac{x-1}{2}}\) suy ra \(2\sqrt{x^2-5x+6}=\left(x-3\right)\left(x-1\right)\)
giải pt ta tìm đc x và đối chiếu với đk đề bài ta tìm đc x
![](https://rs.olm.vn/images/avt/0.png?1311)
đk: \(\begin{cases}3x-1\ge0\\x+3\ge0\\x+1\ge0\end{cases}\)
ta có
\(\log_2\left(3x-1\right)+\log_2\left(x+3\right)=\log_22^2+\log_2\left(x+1\right)\Rightarrow\log_2\left(3x-1\right)\left(x+3\right)=\log_2\left(2^2\left(x+1\right)\right)\)
suy ra \(\left(3x-1\right)\left(x+3\right)=4\left(x+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
MINF=-111
MING=18/25
để ý các đẳng thức có dấu gttđ luôn > 0 thôi
<=>x2+|x-1|=x2+2
<=>|x-1|=2
Với x\(\ge\)1 ,ta được: x-1=2 <=>x=3 (nhận)
Với x<1, ta được: 1-x=2<=>x=-1 ( nhận)
<=>x2+|x-1|=x2+2
<=>|x-1|=2
Với x≥≥1 ,ta được: x-1=2 <=>x=3 (nhận)
Với x<1, ta được: 1-x=2<=>x=-1 ( nhận)