Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y\left(y-5\right)\left(y-10\right)\left(y-15\right)< 0\)y(y-5)(y-10)(y-15)<0
\(\left(y^2-15y\right)\left(y^2-15y+50\right)< 0\)(y^2-15y)(y^2-15y+50)
\(\left(z\right)\left(z+50\right)< 0\)
\(-50< z< 0\Rightarrow\hept{\begin{cases}y^2-15y< 0\Rightarrow0< y< 15\\y^2-15>-50dungvoi.\forall y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y>0\\y< 15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-5>0\Leftrightarrow\orbr{\begin{cases}x>5\\x< -5\end{cases}}\\x^2-5< 15\Rightarrow-10< x< 10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-5>0\Rightarrow x< -5hoac.x>5\\x^2-5< 10\Rightarrow-10< x< 10\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}-10< x< -5\\5< x< 10\end{cases}}\)
Để đẳng thức trên xảy ra thì phải có ít nhất 1 số âm hoặc 3 số âm
TH1:có 1 số âm
=>x2-20 < 0 <x2-15
=>15 < x2 <20
=> x2=16
=> x = +-4
TH2:có 3 số âm
=> x2-10 < 0 <x2-5
=> 5 < x2 <10
=> x2 =9
=>x=+-3. Vậy x=3;x=-3;x=4hoặc x=-4
Chắc lun đó bạn ạ.Chúc bạn học giỏi nha!
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
\(\left|x+5\right|\le2\Rightarrow-2\le x+5\le2\)
\(\Rightarrow x+5\in\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)
\(\left(x^2-5\right)\left(x^2-10\right)\left(x^2-15\right)\left(x^2-20\right)< 0\)
Xét 2 trường hợp:
TH1:Trong 4 số có 3 số âm 1 số dương.
Theo bài ra,ta có:\(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}}\Rightarrow\hept{\begin{cases}x^2>5\\x^2>10\end{cases}\Rightarrow}5< x^2< 10\Rightarrow x=3\left(h\right)x=-3\)
TH2:Trong 4 số có 3 số dương,1 số âm.
Theo bài ra,ta có:\(\hept{\begin{cases}x^2-20< 0\\x^2-15>0\end{cases}\Rightarrow}\hept{\begin{cases}x^2< 20\\x^2>15\end{cases}}\Rightarrow15< x^2< 20\Rightarrow x=4\left(h\right)x=-4\)
Vậy \(x\in\left\{3;-3;4;-4\right\}\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
a)Nhận xét:
\(x^2;\left(y+\frac{1}{10}\right)^4\ge0\) nên tổng chúng bằng 0 khi cả 2 bằng 0
<=> \(x=0;y=-\frac{1}{10}\)
b) \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\) nên không tìm được giá trị x và y thoả mãn đề bài.
a)Như ta đã thấy:
\(x^2;\left(y+\frac{1}{10}\right)^4\ge0\) Nên tổng trên = 0 khi 2 số hạng bằng 0
=> x= 0 và y = -1/10
b) vì:
\(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
\(x^2-1>x^2-4>x^2-7>x^2-10\)
\(\text{Để }\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-1\right)>0\\\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\end{cases}\text{hoặc }\hept{\begin{cases}\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right)>0\\\left(x^2-10\right)< 0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\text{hoặc }\hept{\begin{cases}x^2>7\\x^2< 10\end{cases}}}\)
\(\Rightarrow x^2=9\Rightarrow x=\pm3\)
Áp dụng tính chất: \(a^{2n}+b^{2m}=0\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)(2n và 2m là các số chẵn)
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
Để \(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\)
Thì phải có một sốâm và 3 số dương hoặc 1 số dương và 3 số âm
Mà \(x^2\ge0\forall x\)
\(\Rightarrow x^2-20< x^2-15< x^2-10< x^2-5\)
+ Với TH có 1 số âm và 3 số dương:
\(\Rightarrow\left\{{}\begin{matrix}x^2-20< 0\\x^2-15>0\end{matrix}\right.\)\(\Leftrightarrow15< x^2< 20\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)
+ Với TH có 1 số dương và 3 số âm:
\(\Rightarrow\left\{{}\begin{matrix}x^2-10< 0\\x^2-5>0\end{matrix}\right.\)\(\Leftrightarrow5< x^2< 10\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
Vậy \(S=\left\{\pm3;\pm4\right\}\)