\(\left(x^2-10x+15\right)\left(x^2-12x+15\right)\)=\(4x\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(x^2-6x+15=a,2x=b\)

\(PT\Leftrightarrow\left(a-2b\right)\left(a-3b\right)=2ab\)

\(\Leftrightarrow a^2-7ab+6b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}}\)

Đến đây đơn giản rồi nhé :))))

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

22 tháng 5 2020

\(a,3x^3+6x^2-4x=0\)

\(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x^2+6x-4=0\left(1\right)\end{cases}}\)

\(\Delta_{\left(1\right)}=36+4\cdot3\cdot4=84>0\)

\(\text{\Rightarrow pt có 2 nghiệm phân biệt}\)

\(x_1=\frac{-3+\sqrt{21}}{3};x_2=\frac{-3-\sqrt{21}}{3}\)

\(\text{Vậy phương trình đã cho bằng 0 khi x=0 hoặc x= }\frac{-3\pm\sqrt{21}}{3}\)

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

NV
3 tháng 1 2019

1/ Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)

\(t^2-2+\left(3-t\right)x-1-2t=0\)

\(\Leftrightarrow t^2-2t-3-\left(t-3\right)x=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+1\right)-\left(t-3\right)x=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+1-x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3\left(1\right)\\\sqrt{x^2+2}=x-1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2=7\Rightarrow x=\pm\sqrt{7}\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2+2=\left(x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2=x^2-2x+1\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-1}{2}\left(l\right)\)

Vậy nghiệm pt là \(x=\pm\sqrt{7}\)

2/

\(x^2+3-6x\sqrt{x^2+3}+9x^2-\sqrt{x^2+3}+3x-2=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3}-3x\right)^2-\left(\sqrt{x^2+3}-3x\right)-2=0\)

Đặt \(\sqrt{x^2+3}-3x=t\)

\(\Rightarrow t^2-t-2=0\) \(\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)

TH1: \(\sqrt{x^2+3}-3x=-1\Rightarrow\sqrt{x^2+3}=3x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\x^2+3=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\8x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow x=1\)

TH2: \(\sqrt{x^2+3}-3x=2\Leftrightarrow\sqrt{x^2+3}=3x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\x^2+3=\left(3x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\8x^2+12x+1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-3+\sqrt{7}}{4}\)

NV
3 tháng 1 2019

3/ ĐKXĐ: \(\dfrac{3}{2}\le x\le\dfrac{5}{2}\)

\(1.\sqrt{2x-3}+1.\sqrt{5-2x}\le\sqrt{\left(1^2+1^2\right)\left(2x-3+5-2x\right)}=2\)

\(\Rightarrow VT\le2\)

\(VP=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)

\(\Rightarrow VT=VP\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

4/

ĐKXĐ: \(x\ge\dfrac{-5}{4}\)

\(x^2-2x+1+4x+5-6\sqrt{4x+5}+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{4x+5}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{4x+5}-3=0\end{matrix}\right.\) \(\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

22 tháng 6 2017

a) \(3x^3+6x^2-4x=0\) \(\Leftrightarrow\) \(x\left(3x^2+6x-4\right)=0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=\dfrac{-3+\sqrt{21}}{3}\\x=\dfrac{-3-\sqrt{21}}{3}\end{matrix}\right.\end{matrix}\right.\)

vậy phương trình có 2 nghiệm \(x=0;x=\dfrac{-3+\sqrt{21}}{3};x=\dfrac{-3-\sqrt{21}}{3}\)

13 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)

28 tháng 7 2015

Chia nhỏ ra đăng đi thớt :))

28 tháng 8 2016

bạn đăng

vậy đến bố tổ conf biết 

k thì 2 nha