Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left|x+\frac{1}{5}\right|-4=-2\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=2\)
\(\Rightarrow x+\frac{1}{5}=2\) hoặc \(-2\)
Xét \(x+\frac{1}{5}=2\Leftrightarrow x=\frac{9}{5}\)
Xét \(x+\frac{1}{5}=-2\Leftrightarrow x=-\frac{11}{5}\)
a) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
Ta có: 1/2 - (1/3 + 1/4) = 1/2 - 7/12 = -1/12 ;
1/48 - (1/16 - 1/6) = 1/48 + 5/48 = 1/8
Vì \(-\frac{1}{12}< x< \frac{1}{8}\) nên x = 0
b) \(4\frac{5}{9}:2\frac{5}{18}-7< x< \left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(-21\frac{2}{3}\right)\)
Ta có :
\(4\frac{5}{9}:2\frac{5}{18}-7=2-7=-5\)
\(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(-21\frac{2}{3}\right)=\left(1+\frac{38}{5}\right):\left(-21\frac{2}{3}\right)=\frac{43}{5}:\frac{-65}{3}=-\frac{129}{325}\)
Vì \(-5< x< -\frac{129}{325}\) nên \(x\in\left\{-4;-3;-2;-1\right\}\)
a. \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\left|-\frac{16}{5}+\frac{2}{5}\right|-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\left|-\frac{14}{5}\right|-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\frac{14}{5}-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{5}{3}\end{cases}.}\)
Vậy \(x\in\left\{-\frac{5}{3};\frac{7}{3}\right\}.\)
b. \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)\(\Leftrightarrow\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}\times\left(x-7\right)^{10}=0\)\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}.}\)Xét 2 trường hợp:
- \(\left(x-7\right)^{x+1}=0\)\(\Leftrightarrow x-7=0\Leftrightarrow x=7.\)
- \(1-\left(x-7\right)^{10}=0\Leftrightarrow\left(x-7\right)^{10}=1\Leftrightarrow\left(x-7\right)^{10}=\left(\pm1\right)^{10}\)\(\Leftrightarrow\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=6\end{cases}.}}\)
Vậy \(x\in\left\{6;7;8\right\}.\)
|x-1/3|+4/5=14/5
|x-1/3|=2
=>x-1/3=2 hoặc x-1/3=-2
=>x=7/3 hoặc x=-5/3
vậy x=7/3 hoặc x=-5/3
tk mk nha
\(\left|x+\frac{1}{3}\right|+\frac{4}{5}=\left|-3,2+\frac{2}{5}\right|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^5}{9}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}+\left(27-\frac{3^2}{6}\right)\left(27-\frac{3^3}{7}\right)...\left(27-27\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|=2\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{3}=2\\x+\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=-\frac{7}{3}\end{cases}}}\)
bạn ơi, có một chỗ chưa chuẩn .bạn kiểm tra lại giú mình. chỗ vế trái bạn thiếu \(\left(27-\frac{3}{5}\right)\). bạn bổ sung vào cho đúng nhé. dù sao vẫn cảm ơn bạn.
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\\ \left|x-\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\\ \left|x-\frac{1}{3}\right|=2 \\ \Rightarrow\left[{}\begin{matrix}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=-\frac{5}{3}\end{matrix}\right.\)
Vậy...
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)
=> \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-\frac{16}{5}\right)+\frac{2}{5}\right|\)
=> \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|-\frac{14}{5}\right|=\frac{14}{5}\)
=> \(\left[{}\begin{matrix}x-\frac{1}{3}=\frac{14}{5}\\x-\frac{1}{3}=-\frac{14}{5}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{14}{5}+\frac{1}{3}\\x=-\frac{14}{5}+\frac{1}{3}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{47}{15}\\x=-\frac{37}{15}\end{matrix}\right.\)
Vậy:..................................
P/s: Ko chắc!