![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
b, \(\Leftrightarrow x\left(x-3\right)+\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\2x+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\2x=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{-1}{2}\end{array}\right.\)
a) |x-y|+|x-9|=0
=>
|x-y| | 0 |
|x-9| | 0 |
x | 9;-9 |
y | 9;-9 |
b) |x2-3x|+|(x+1).(x-3)|=0
xét x2-3x|=0
=> x2-3x=0
x(x-3)=0
=>x=0 hoặc x-3=0
=> x=3
|(x+1)(x-3)|=0
=> (x+1)(x-3)=0
th1 x=0
(0+1).(0-3)=0
-1.(-3)=0(loại)
th2 x=3
(3+1)(3-3)=0
4.0=0 (lấy)
=> x=0
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(\left(x-\frac{7}{9}\right)^3=\left(\left(\frac{2}{3}\right)^2\right)^3\)
\(x-\frac{7}{9}=\frac{4}{9}\)
\(x=\frac{4}{9}+\frac{7}{9}\)
\(x=\frac{11}{9}\)
Vậy x=\(\frac{11}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(pt\Leftrightarrow\left(x-9\right)^{x+1}=\left(x-9\right)^{x+11}\)
Do \(x+1\ne x+11\) nên \(\orbr{\begin{cases}x-9=0\\x-9=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=9\\x=10\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left|x-\dfrac{4}{11}\right|+\left|5+y\right|=0\)
<=>\(\left[{}\begin{matrix}x-\dfrac{4}{11}=0\\5+y=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=\dfrac{4}{11}\\y=-5\end{matrix}\right.\)
phần b, c tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn ơi trả lời được câu này kông
( x + 1 ) + ( x - 3 ) + ( x + 5 ) + ............ + ( x +9) = 35
![](https://rs.olm.vn/images/avt/0.png?1311)
a,
- Theo đề bài ta có:
(8x-1)2n-1 = 52n-1
=> 8x-1 = 5
8x = 6
x = \(\dfrac{6}{8}\)= \(\dfrac{3}{4}\)
- Vậy x = \(\dfrac{3}{4}\)
b,
- Ta có:
(x - 7)x+1 - (x - 7)x+11 = 0
(x - 7)x . (x - 7) - (x - 7)x . (x - 7)11 = 0
(x - 7)x . [(x - 7) - (x - 7)11] = 0
=> (x - 7)x = 0 hoặc [(x - 7) - (x - 7)11] = 0
- TH1: (x - 7)x = 0
=> x - 7 = 0
=> x = 7
- TH2:
[(x - 7) - (x - 7)11] = 0
=> x - 7 = (x -7)11
=> x - 7 = 1 hoặc x - 7 = 0
+ Nếu x - 7 = 1
x = 8
+ Nếu x - 7 = 0 (TH1)
- Vậy x = 7 hoặc x = 8
c, - Theo đề bài ta có:
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
- Thấy \(\left(\dfrac{2}{3}\right)^6=\left(\dfrac{2}{3}\right)^{2\cdot3}\)= \(\left(\dfrac{4}{9}\right)^3\)
=> \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{4}{9}\right)^3\)
=> \(x-\dfrac{2}{9}=\dfrac{4}{9}\)
=> \(x=\dfrac{4}{9}-\dfrac{2}{9}\)
\(x=\dfrac{2}{9}\)
- Vậy \(x=\dfrac{2}{9}\)