Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left(x-\frac{1}{5}\right)^5=\frac{1}{243}\)
\(x-\frac{1}{5}=\sqrt[5]{\frac{1}{243}}\)
\(x-\frac{1}{5}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{5}\)
\(x=\frac{8}{15}\)
b.
|2x-1|-x=1
\(\Leftrightarrow\orbr{\begin{cases}2x-1-x=1\\-2x+1-x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy x= 0 hoặc x=2
c. \(\left|\frac{3}{5}-\frac{1}{2}x\right|>\frac{2}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{5}-\frac{1}{2}x>\frac{2}{5}\\-\frac{3}{5}+\frac{1}{2}x>\frac{2}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x< \frac{1}{5}\\\frac{1}{2}x>\frac{-1}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x< \frac{2}{5}\\x>\frac{-2}{5}\end{cases}}\)
Vậy....
Bài giải
a, \(\left(x-\frac{1}{5}\right)^5=\frac{1}{243}\)
\(\left(x-\frac{1}{5}\right)^5=\left(\frac{1}{2}\right)^5\)
\(x-\frac{1}{5}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{1}{5}\)
\(x=\frac{7}{10}\)
\((x-1)^5=-243\)
\(\Rightarrow x-1=(-3)^5\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-3+1\)
\(\Rightarrow x=-2\)
\(\left(x-1\right)^5=-243\)
\(\Rightarrow\left(x-1\right)^5=\left(-3\right)^5\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-3+1\)
\(\Rightarrow x=-2\)
a: =>x-1/2=1/3
=>x=5/6
b: =>|2x-1|=x+1
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x-1-x-1\right)\left(2x-1+x+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x-2\right)\left(3x\right)=0\end{matrix}\right.\)
hay \(x\in\left\{2;0\right\}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{5}>\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{3}{5}< -\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x>1\\\dfrac{1}{2}x< \dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{2}{5}\end{matrix}\right.\)
\(a\)\(,\)\(\left(2x-3\right)^2\)\(=\)\(4^2\)(1)
mà ta có \(4^2\)=\(\left(-4\right)^2\)(2)
Từ (1) và (2)\(\Rightarrow\)\(\left(2x-3\right)^2\)=\(4^2\)=\(\left(-4\right)^2\)
\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-1}{2}\end{cases}}\)(thỏa mãn \(x\)\(\in\)\(Q\))
Vậy \(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-1}{2}\end{cases}}\)
\(b,\)\(\left(3x-2\right)^5\)\(=\)\(-243\)
\(\Rightarrow\)\(\left(3x-2\right)^5\)\(=\)\(\left(-3\right)^5\)
\(\Rightarrow\)\(3x-2=-3\)
\(\Rightarrow\)\(3x=-1\)
\(\Rightarrow\)\(x=\frac{-1}{3}\)(thỏa mãn \(x\in Q\))
Vậy \(x=\frac{-1}{3}\)
\(c,\)\(\left(7x+2\right)^{-1}=3^{-2}\)
\(\Rightarrow\frac{1}{7x+2}=\frac{1}{3^2}\)
\(\Rightarrow\frac{1}{7x+2}=\frac{1}{9}\)
\(\Rightarrow\)\(7x+2=9\)
\(\Rightarrow\)\(7x=7\)
\(\Rightarrow x=1\)(thỏa mãn \(x\in Q\))
Vậy \(x=1\)
A,\(\left(2x-3\right)^2=4^2\)
\(2x-3=4\)
\(2x=7\)
\(x=3,5\)
Tương tự
a: =>x=(-2/3)^5:(-2/3)^2=(-2/3)^3=-8/27
b: =>x*(-1/3)^3=(-1/3)^4
=>x=-1/3
d: =>3x-2=-3
=>3x=-1
=>x=-1/3
a,\(8< 2^x\le2^9.2^{-5}\)
\(2^3< 2^x\le2^4\)
\(\Rightarrow x=4\)
b, \(27< 81^3.3^x< 243\)
\(3^3< 3^{12-x}< 3^5\)
\(\Rightarrow3< 12-x< 5\)
12-x=4
x=8
c,\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)
\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Rightarrow x>5\)
x=6;7;8........
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
a) \(5.2^{x+1}.2^{-2}-2^x=384\Leftrightarrow2^x\left(5.2^{-2}.2-1\right)=384\)\(\Leftrightarrow2^x.1,5=384\Leftrightarrow2^x=384:1,5=256=2^8\)
\(\Rightarrow x=8\)
b) \(3^{x+2}.5^y=45^x\Leftrightarrow3^{x+2}.5^y=3^{2x}.5^x\Leftrightarrow\frac{3^{2x}}{3^{x+2}}=\frac{5^y}{5^x}\)\(\Leftrightarrow3^{2x-x+2}=5^{y-x}\Leftrightarrow3^{x+2}=5^{y-x}\)
\(\Rightarrow x+2=y-x=0\Rightarrow x=y=-2\)
(x-1)5= -243 (x-1)5=-35 => x-1=-3
x= -3+1
x=-2 k cho mik nha
mik co het suc viet do
(x-1)5=-243
(x-1)5=(-3)5
x-1=-3
x=-2