\(\left(\sqrt{9}+\sqrt{4}\right)\sqrt{x}=10\)

Cho ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(\sqrt{9}+\sqrt{4}\right)\sqrt{x}=10\)

\(\Rightarrow\left(3+2\right)\sqrt{x}=10\)

\(\Rightarrow5\cdot\sqrt{x}=10\)         \(\Rightarrow\sqrt{x}=2\)

=> x = 4

Ta có: 2a = 2b = 2c => a = b = c

\(\Rightarrow A=\frac{a-b+c}{a+2b-c}=\frac{a-a+a}{a+2a-a}=\frac{a}{3a-a}=\frac{a}{2a}=\frac{1}{2}\)

28 tháng 12 2019

1. \(\left(\sqrt{9}+\sqrt{4}\right)\sqrt{x}=10\)

\(\Rightarrow\left(3+2\right)\sqrt{x}=10\)

\(\Rightarrow5\sqrt{x}=10\)

\(\Rightarrow\sqrt{x}=2\)

\(\Rightarrow\left(\sqrt{x}\right)^2=2^2\)

\(\Rightarrow x=4\)

2. \(2a=2b=2c\)\(\Rightarrow a=b=c\)\(\Rightarrow A=\frac{a-b+c}{a+2b-c}=\frac{a-a+a}{a+2a-a}=\frac{a}{2a}=\frac{1}{2}\)

14 tháng 2 2020

Ta có : \(\frac{3a+b+2a}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được :
\(P=\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}\)

Vậy \(P=9\)

Trừ cả 3 đi 1 ta còn

\(\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

Vói a+b+c=1 thì P=-1

Với a+b+c khác 0 thì

\(\Rightarrow2a+c=2b=b+c\Rightarrow2a=b=c\)

\(\Rightarrow P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\frac{3}{2}b2c3a}{abc}=9\)

Vậy............

23 tháng 10 2019

Áp dụng dãy tỉ số bằng nhau ta có: 

 \(\frac{2a+b}{c}\)=\(\frac{2b+c}{a}\)=\(\frac{2c+a}{b}\)=\(\frac{2a+b+2b+c+2c+a}{a+b+c}=\frac{3a+3b+3c}{a+b+c}=3\)

=> \(\frac{2a+b}{c}\)=3

\(\frac{a}{2b+c}=\frac{1}{3}\)

\(\frac{b}{2c+a}=\frac{1}{3}\Rightarrow\frac{3b}{2c+a}=1\)

=> \(A=3+\frac{1}{3}+1=\frac{13}{3}\)

20 tháng 3 2020

Áp dụng tính chất của dãy tỉ số bằng nhau 

\(\Rightarrow\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}=\frac{3a+3b+3c}{a+b+c}\)\(=\frac{3\left(a+b+c\right)}{a+b+c}\)\(=3\)

 => \(\hept{\begin{cases}\frac{2a+b}{c}=3\\\frac{2b+c}{a}=3\\\frac{2c+a}{b}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2a+b=3c\\2b+c=3a\\2c+a=3b\end{cases}}\)

\(\Rightarrow A\)\(=\frac{3c}{c}+\frac{a}{3a}+\frac{3b}{3b}=3+\frac{1}{3}+1=\frac{13}{3}\)

\(A=\frac{13}{3}\)

20 tháng 3 2018

\(a)\) Để A đạt GTLN thì \(6-x>0\) và đạt GTNN 

\(\Rightarrow\)\(6-x=1\)

\(\Rightarrow\)\(x=5\)

Suy ra : \(A=\frac{2}{6-x}=\frac{2}{6-5}=\frac{2}{1}=2\)

Vậy \(A_{max}=2\) khi \(x=5\)

Chúc bạn học tốt ~ 

Bài 1:Tính:a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2b,\(\sqrt{\left(a+10\right)^2}\)với a<-10c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)Bài 2;Tìm x để:a,\(\sqrt{x}\)=1/2b,\(\sqrt{x+7}\)=4c,\(\sqrt{2x-1}\)=1/3d,\(\sqrt{x+1}\)=0e,\(\sqrt{x-3}\)+2=0f,\(\sqrt{2x}\)+3=9Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0Bài 4:So sánh:a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)Bài 5:Không...
Đọc tiếp

Bài 1:Tính:

a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2

b,\(\sqrt{\left(a+10\right)^2}\)với a<-10

c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)

Bài 2;Tìm x để:

a,\(\sqrt{x}\)=1/2

b,\(\sqrt{x+7}\)=4

c,\(\sqrt{2x-1}\)=1/3

d,\(\sqrt{x+1}\)=0

e,\(\sqrt{x-3}\)+2=0

f,\(\sqrt{2x}\)+3=9

Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0

Bài 4:So sánh:

a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)

b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)

Bài 5:Không dùng bảng số liệu máy tính hãy so sánh:

a.\(\sqrt{26}+\sqrt{17}\) và 9

b,\(\sqrt{8}-\sqrt{5}\) và 1

c,\(\sqrt{63-27}\) và \(\sqrt{63}-\sqrt{27}\)

Bài 6:Hãy so sánh A và B

A=\(\sqrt{225}-\frac{1}{\sqrt{5}}\)-1

B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\) 

Bài 7:a,CHo M=\(\frac{\sqrt{x}-1}{2}\).Tìm x\(\in\)Z và x<50 để m có giá trị nguyên

         b,Cho P=\(\frac{9}{\sqrt{5}-5}\).Tìm x\(\in\)Z để P có giá trị nguyên

Bài 8:cho P=1/4+2\(\sqrt{x-3}\);Q=9.3.\(\sqrt{x-2}\)

a,Tìm GTNN của P

b,Tìm giá trị lớn nhất của Q

Bài 8:Cho biểu thức :A=|x-1/2|+3/4-x

a,rút gọn A

b,Tìm GTNN của A

Baif9:Cho biểu thức:B=0,(21)-x-?x-0,(4)|

a,Rút gọn B

b,Tìm GTLN của B

Bài 10:So sánh:

a,0,55(56) và 0,5556

b,-1/7 và -0,1428(57)

c,\(2\frac{2}{3}\)và 2,67

d,-7/6 và 1,16667

e,0,(31) và 0,3(11)

      Mn cố gắng giúp mk hết,mình cảm ơn nhìu.Ai xong trước mk tick cho:))

6
3 tháng 2 2019

các bạn giúp mk để mk ăn tết cho zui

3 tháng 2 2019

luong thuy anh giúp mk vs

21 tháng 12 2019

Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được:

\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)

Vậy \(P=9\)

17 tháng 12 2016

lop 7 lam gi co nghiem voi da thuc ha ban

18 tháng 12 2016

Đề thi HSG lớp 7 đó bạn

18 tháng 12 2017

Xét \(a+b+c=0\) thì \(\hept{\begin{cases}a+2b=c\\b+2c=a\\c+2a=b\end{cases}}\)\(\Rightarrow P=\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{abc}=1\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(a+b+c=\frac{a+2b-c}{c}=\frac{b+2c-a}{a}+\frac{c+2a-b}{b}=\frac{a+2b-c+b+2c-a+c+2a-b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+2b=3c\\b+2c=3a\\c+2a=3b\end{cases}}\)\(\Rightarrow P=\frac{3a.3b.3c}{abc}=27\)

1 tháng 9 2020

Có a+2b-c/c=b+2c-a/a=c+2a-b/b

suy ra a+2b-c/c=b+2c-a/a=c+2a-b/b=a+2b-c+b+2c-a+c+2a-b/a+b+c=2a+2b+2c/a+b+c=2

suy ra a+2b-c=2c suy ra a+2b=3c

           b+2c-a=2a suy ra b+2c=3a

           c+2a-b=2b suy ra c+2a=3b

Có P=(2+a/b)(2+b/c)(2+c/a)=(2b+a/b)(2c+b/c)(2a+c/a)=(3c/b)(3a/c)(3b/a)=27abc/abc=27

20 tháng 2 2020

a) M(x) = A(x) - 2B(x) + C(x)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2(x5 - 2x4 + x2 - 5x + 3) + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2x5 - 4x4 - 2x2 + 10x - 6 + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = (2x5 - 2x5) + (-4x3 + 4x3) + (x2 - 2x2 + 3x2) + (-2x + 10x - 8x) + (2 - 6 + \(4\frac{3}{16}\))

\(\Leftrightarrow\)M(x) = 2x2 + \(\frac{3}{16}\)

b) Thay \(x=-\sqrt{0,25}\)vào M(x), ta được:

\(M\left(x\right)=2\left(-\sqrt{0,25}\right)^2+\frac{3}{16}\)

\(M\left(x\right)=2.0,25+\frac{3}{16}\)

\(M\left(x\right)=0,5+\frac{3}{16}\)

\(M\left(x\right)=\frac{11}{16}\)

c) Ta có : \(x^2\ge0\)

\(\Leftrightarrow2x^2+\frac{3}{16}\ge\frac{3}{16}\)

Vậy để \(M\left(x\right)=0\Leftrightarrow x\in\varnothing\)