Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)
e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)
Vậy ....
\(\left|x-3\right|+\left|x+2\right|=7\)
-TH: \(x< -2\) thì ta được phương trình :
\(3-x+-x-2=7\)
\(\Leftrightarrow-2x=6\)
\(\Leftrightarrow x=-3\left(c\right)\)
-TH: \(-2\le x< 3\) thì ta được phương trình:
\(3-x+x+2=7\)
\(\Leftrightarrow5=7\)(vô lí nên loại)
-TH: \(x\ge3\) thì ta được phương trình:
\(x-3+x+2=7\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(c\right)\)
Vậy nghiệm của phương trình là \(S=\left\{-3;4\right\}\)
3a)Ta xét:
-TH: \(x< 0\) thì \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)
-TH: \(0< x< 2\) thì \(x>0\), \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\left(c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2< 0\\x-3< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< 2\\x< 3\end{matrix}\right.\)
\(\Rightarrow0< x< 2\)
-TH: \(2< x< 3\) thì \(x>0\), \(x-2>0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)
-TH: \(x>3\) thì \(x>0\), \(x-2>0\) và \(x-3>0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2>0\\x-3>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x>3\end{matrix}\right.\)
\(\Rightarrow x>3\)
Vậy nghiệm của phương trình là 0<x<2 và x>3
b)Dựa vào câu a ta có:
-TH: \(x< 0\) thì \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x< 0\\x< 2\\x< 3\end{matrix}\right.\)
\(\Rightarrow x< 0\)
-TH:\(2< x< 3\) thì \(x>0\), \(x-2>0\), \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x< 3\end{matrix}\right.\)
\(\Rightarrow2< x< 3\)
Vậy nghiệm của phương trình là x<0 và 2<x<3
Không biết có đúng không nữa
a) \(\left(\frac{2}{3}\right)^x=\left(\frac{4}{9}\right)^{50}\)
\(\Rightarrow\left(\frac{2}{3}\right)^x=\left(\frac{2^2}{3^2}\right)^{50}\)
\(\Rightarrow\left(\frac{2}{3}\right)^x=\left(\frac{2}{3}\right)^{100}\)
\(\Rightarrow x=100\)
Vậy x = 100
b) \(\left(\frac{2}{3}-x\right)^2=\frac{1}{36}\)
\(\Rightarrow\left(\frac{2}{3}-x\right)^2=\left(\frac{1}{6}\right)^2\)
\(\Rightarrow\frac{2}{3}-x=\frac{1}{6}\)
\(\Rightarrow x=\frac{2}{3}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
2)
Ta có:
\(74^{m+1}+74^m=74^m.74^1+74^m=74^m.\left(74+1\right)=74^m.75⋮25\)
( vì \(75⋮25\) )
\(\Rightarrowđpcm\)