\(\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2015

Gọi biều thức trên là A, ta có:

A=(1/2.4+1/4.6+1/6.8+1/8.10+1/10.12)x=2

2A=(2/2.4+2/4.6+2/6.8+2/8.10+2/10.12)x=2

2A=(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)x=2

2A=(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)x=2

2A=(1/2-1/12)x=2

2A=5/12x=2

=>A=5/24x=1

=>x=1:5/24=24/5

 

5 tháng 4 2015

=>1/2.(5/12).x=1

5/24.x=1

x=1:5/24

x=24/5

lưu ý, 1/2.5/12 là tính xong phần 1/2.4 +...+1/10.12 rùi nhé

19 tháng 2 2020

=>2A=2(1/2x4+1/4.6+1/6.8+1/8.10+1/10.12+1/12.14)

=> 2A=2/2.4 + 2/4.6 + 2/6.8 + 2/8.10 + 2/10.12 + 2/12.14

=> 2a =1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7

=> 2A =1-1/7

=>2A=16/17

=> A= 8/17

Mình chắc chắn . Chúc bạn học tốt

\(A=\frac{1}{2.4}\)\(+\frac{1}{4.6}\)\(+\frac{1}{6.8}\)\(+\frac{1}{8.10}\)\(+\frac{1}{10.12}\)\(+\frac{1}{12.14}\)

\(\Rightarrow2A=2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\right)\)

\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{14}=\frac{7}{14}-\frac{1}{14}=\frac{6}{14}\)

\(\Rightarrow2A=\frac{6}{14}\)

\(\Rightarrow A=\frac{3}{14}\)

3 tháng 9 2017

\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)

\(2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)

\(2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\)

\(2S=\frac{1}{2}-\frac{1}{10}\)

\(2S=\frac{2}{5}\)

\(S=\frac{2}{5}:2\)

\(S=\frac{1}{5}\)

3 tháng 9 2017

S = \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)

=> 2S = \(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)

=> 2S = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\)

=> 2S = \(\frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)

=> S = \(\frac{2}{5}:2=\frac{2}{5}x\frac{1}{2}=\frac{1}{5}\)

8 tháng 9 2016

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

  \(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)

  \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(=\frac{4}{9}-\frac{1}{5}\)

\(=\frac{11}{45}\)

 

8 tháng 9 2016

Cảm ơn giúp  bài nữa nha !!

17 tháng 3 2019

a) Ta có:

\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)

\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)

\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)

\(=x+2x+-3+1-21\)

\(=3x-23\)

=> \(3x-23=2020\)

\(3x=2020+23=2043\)

=> \(x=2043:3=681\)

17 tháng 3 2019

Nhầm

\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)

\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)

8 tháng 8 2017

Ta có:

\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+\frac{1}{5.7}+\frac{1}{6.8}+\frac{1}{7.9}+\frac{1}{8.10}\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}....+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\frac{8}{9}+\frac{1}{2}.\frac{2}{5}=\frac{1}{2}.\left(\frac{8}{9}+\frac{2}{5}\right)=\frac{1}{2}.\frac{58}{45}=\frac{29}{45}\)

9 tháng 9 2017

29/45 bạn ạ

2 tháng 5 2017

Ta có

=\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)....\left(1+\frac{1}{8.10}\right)\)

=\(\frac{4}{3}.\frac{9}{8}....\frac{81}{80}\)

=\(\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{9.9}{8.10}\)

=\(\frac{2.3....9}{1.2....8}.\frac{2.3....9}{3.4....10}\)

=\(9.\frac{2}{10}\)

=\(\frac{9}{5}\)

17 tháng 4 2017

Ta có: 

16 tháng 6 2020

\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)\cdot2x}=\frac{1}{8}\left(x\inℕ;x\ge2\right)\)

Đặt \(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)2x}\)

\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left(2x-2\right)2x}\)

\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2x-2}-\frac{1}{2x}\)

\(2A=\frac{1}{2}-\frac{1}{2x}=\frac{x-1}{2x}\)

\(\Rightarrow A=\frac{x-1}{2x}:2=\frac{x-1}{2x}\cdot\frac{1}{2}=\frac{x-1}{4x}\)

Mà \(A=\frac{1}{8}\Rightarrow\frac{x-1}{4}=\frac{1}{8}\)

\(\Leftrightarrow8x-8=4\)

\(\Leftrightarrow8x=12\)

\(\Leftrightarrow x=\frac{12}{8}=\frac{3}{2}\left(ktm\right)\)

Vậy không có x thỏa mãn yêu cầu đề bài

1 tháng 5 2019

\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}=\frac{1}{8}\)

\(\Rightarrow\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{\left(2x-2\right).2x}\right)=\frac{1}{8}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}=\frac{1}{8}:\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)

\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

26 tháng 6 2019

TL:
\(\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{\left(2x-2\right)2x}\right)=\frac{1}{8}\)  

\(\frac{1}{2}-\frac{1}{4x}=\frac{1}{8}\) 

\(\frac{1}{4x}=\frac{3}{8}\) 

=>x=2/3

hc tốt