Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
1: =>1/3:x=3/5-2/3=9/15-10/15=-1/15
=>x=-1/3:1/15=5
2: \(\Leftrightarrow x\cdot\dfrac{2}{3}-3=\dfrac{2}{5}\cdot\left(-10\right)=-4\)
=>x*2/3=-1
=>x=-3/2
3: \(\Leftrightarrow\dfrac{8}{3}:x=\dfrac{25}{12}:\dfrac{-3}{50}=\dfrac{25}{12}\cdot\dfrac{-50}{3}\)
hay x=-48/625
9: =>x=-2*3/1,5=-4
8: =>2/3:x=5/2:-3/10=5/2*(-10)/3=-50/6=-25/3
=>x=-2/3:25/3=-2/3*3/25=-2/25
b, \(-x-2=\dfrac{5}{4}\Rightarrow-x=\dfrac{13}{4}\Rightarrow x=-\dfrac{13}{4}\)
c, \(\dfrac{4}{3}-\left(x-\dfrac{1}{5}\right)=\left|-\dfrac{3}{10}+\dfrac{1}{2}\right|-\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\left|\dfrac{1}{5}\right|-\dfrac{1}{6}\)
\(\Rightarrow-x=\dfrac{1}{5}-\dfrac{1}{6}-\dfrac{4}{3}-\dfrac{1}{5}\)
\(\Rightarrow-x=-\dfrac{3}{2}\Rightarrow x=\dfrac{3}{2}\)
d, \(\dfrac{1}{3}-\left(\dfrac{2}{3}-x+\dfrac{5}{4}\right)=\dfrac{7}{12}-\left(\dfrac{5}{2}-\dfrac{13}{6}\right)\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{2}{3}+x-\dfrac{5}{4}=\dfrac{7}{12}-\dfrac{5}{2}+\dfrac{13}{6}\)
\(\Rightarrow x=\dfrac{7}{12}-\dfrac{5}{2}+\dfrac{13}{6}-\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{11}{6}\)
Chúc bạn học tốt!!!
câu 1 \(A=\dfrac{3^2}{5^2}.5^2-\dfrac{9^3}{4^3}:\dfrac{3^3}{4^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{\left(3^2\right)^3}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{3^6}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}=3^2-3^3+\dfrac{1}{2}=-18+\dfrac{1}{2}=-\dfrac{35}{2}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{22}.2\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{4^4}{8^2}\right)^{2009}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{11}\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{\left(2^2\right)^4}{\left(2^3\right)^2}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{1}{2^2}.\dfrac{2^8}{2^6}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{2^8}{2^8}\right)^{2009}\)
\(B=1^{2010}-1^{2009}=1-1=0\)
câu 2
a) \(2x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2x=\dfrac{4}{3}+\dfrac{5}{4}\)
\(\Leftrightarrow2x=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{24}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
1, \(x\left(x+\dfrac{2}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)
2, a, \(\left|x+\dfrac{4}{6}\right|\ge0\)
Để \(\left|x+\dfrac{4}{6}\right|\) đạt GTNN thì \(\left|x+\dfrac{4}{6}\right|=0\)
\(\Leftrightarrow x+\dfrac{4}{6}=0\Rightarrow x=\dfrac{-2}{3}\)
Vậy, ...
b, \(\left|x-\dfrac{1}{3}\right|\ge0\)
Để \(\left|x-\dfrac{1}{3}\right|\) đạt GTLN thì \(\left|x-\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)
Vậy, ...
1)
a)
\(x\cdot\left(x+\dfrac{2}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2)
a)
\(\left|x+\dfrac{4}{6}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x+\dfrac{4}{6}=0\Leftrightarrow x=\dfrac{-4}{6}\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(Min_{\left|x+\dfrac{4}{6}\right|}=0\text{ khi }x=\dfrac{-2}{3}\)
b)
\(\left|x-\dfrac{1}{3}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(Min_{\left|x-\dfrac{1}{3}\right|}=0\text{ khi }x=\dfrac{1}{3}\)
a,
\(\dfrac{1}{4}x-1+\dfrac{1}{3}\left(\dfrac{5}{2}x-7\right)-\left(\dfrac{5}{8}x-2\right)=\dfrac{7}{2}\)
\(\Rightarrow\dfrac{1}{4}x-1+\dfrac{5}{6}x-\dfrac{7}{3}-\dfrac{5}{8}x+2=\dfrac{7}{2}\)
\(\Rightarrow\dfrac{1}{4}x+\dfrac{5}{6}x-\dfrac{5}{8}x=\dfrac{7}{2}+1+\dfrac{7}{3}-2\)
\(\Rightarrow\dfrac{11}{24}x=\dfrac{29}{6}\)
\(\Rightarrow x=\dfrac{116}{11}\)
b,
\(\left|2-\dfrac{3}{2}x\right|-4=x+2\)
\(\Rightarrow\left|2-\dfrac{3}{2}x\right|=x-2\)
\(\Rightarrow\left[{}\begin{matrix}2-\dfrac{3}{2}x=x+2\\2-\dfrac{3}{2}x=-\left(x+2\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2-\dfrac{3}{2}x=x+2\\2-\dfrac{3}{2}x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2-2=x+\dfrac{3}{2}x\\2+2=-x+\dfrac{3}{2}x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{5}{2}x=0\\\dfrac{1}{2}x=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
c,
\(-3\left(\dfrac{2}{5}x-\dfrac{1}{5}\right)-x\left(x-\dfrac{1}{2}\right)=\dfrac{1}{6}-x^2\)
\(\Rightarrow-\dfrac{6}{5}x+\dfrac{3}{5}-x^2+\dfrac{1}{2}x=\dfrac{1}{6}-x^2\)
\(\Rightarrow-\dfrac{7}{10}x=\dfrac{1}{6}-\dfrac{3}{5}-x^2+x^2\)
\(\Rightarrow-\dfrac{7}{10}x=-\dfrac{13}{30}\Leftrightarrow x=\dfrac{13}{21}\)
a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)
\(x=\dfrac{-7}{10}\)
b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)
\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)
\(x+\dfrac{5}{6}=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}-\dfrac{5}{6}\)
\(x=\dfrac{7}{30}\)
c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)
\(\dfrac{7}{5}x=\dfrac{-43}{35}\)
\(\Rightarrow x=\dfrac{-43}{49}\)
d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)
\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)
\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}-\dfrac{3}{4}\)
\(x=\dfrac{-5}{12}\)
e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)
\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)
\(x+\dfrac{4}{5}=2,15-3,75\)
\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)
\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)
\(x=\dfrac{-12}{5}\)
f) \(\left(x-2\right)^2=1\)
\(\Rightarrow x=1\)
Sức chịu đựng có giới hạn -.-
- Mình tiếp tục cho Nguyễn Phương Trâm nhé.
g, \(\left(2x-1\right)^3=-27\)
\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)
\(\Rightarrow2x-1=-3\)
\(\Rightarrow2x=-2\)
=> \(x=-1\)
- Vậy x = -1
h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900 \)
\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)
=> x = 31
i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)
=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{16}\)
- Vậy x=\(\dfrac{1}{16}\)
j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)
\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
- Vạy x = \(\dfrac{3}{4}\)
k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)
=>\(4^x=4\)
=> x = 1
- Vậy x = 1
a. \(\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\Rightarrow2x=\dfrac{1}{5}\Rightarrow x=\dfrac{1}{5}:2=0,1\)
Vậy \(x=0,1\)
b. \(\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\Rightarrow-1\dfrac{3}{5}+x=\dfrac{13}{6}\cdot\dfrac{12}{13}=2\Rightarrow x=2+1\dfrac{3}{5}=3,6\)
Vậy \(x=3,6\)
c. \(-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\Rightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\Rightarrow-\dfrac{4}{7}x=-\dfrac{3}{40}-\dfrac{7}{5}=-\dfrac{59}{40}\Rightarrow x=\left(-\dfrac{59}{40}\right):\left(-\dfrac{4}{7}\right)=2,58125\)
Vậy \(x=2,58125\)