\(\left(2x-2012\right)+\left(5x-2013\right)+\left(4025-7x\right)=0\)0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

2x - 2012 + 5x - 2013 + 4025 - 7x = 0 

<=> (2x + 5x - 7x ) = 0

=> 0x = 0

=> x = 0

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0
26 tháng 7 2018

Đặt 2x^2 + x +2013 = a, x^2-5x+2012 = b

Ta có: a^2 + 4b^2 = 4ab

          a^2 - 4ab + 4b^2 = 0

          (a-2b)^2 = 0

Do đó: a = 2b

Hay: 2x^2 + x -2013 = 2(x^2 -5x -2012)     

        2x^2 + x -2013 = 2x^2 -10x -4024

        x-2013 = -10x -4024

        x+10x = -4024+2013

        11x = -2011

         x = -2011/11

Bạn hỏi nhiều câu hay đấy. Chúc bạn học tốt.   

5 tháng 10 2019

\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2\)

\(=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)

Đặt  \(\hept{\begin{cases}2x^2+x-2013=a\\x^2-5x-2012=b\end{cases}}\) thì ta có :

\(a^2+4b^2=4ab\Rightarrow a^2+b^2-4ab=0\)

\(\Rightarrow\left(a-2b\right)^2=0\Rightarrow a-2b\Rightarrow a=2b\)

Tức là :

\(2x^2+x-2013=2\left(x^2-5x-2012\right)\)

\(\Leftrightarrow2x^2+x-2013=2x^2-10x-4024\)

\(\Leftrightarrow11x+2011=0\Leftrightarrow11x=-2011\Rightarrow x=-\frac{2011}{11}\)

Chúc bạn học tốt !!!

12 tháng 1 2018

Sửa tí nha kết quả cuối sai dâu phải là \(x=\dfrac{-2011}{11}\)

12 tháng 1 2018

\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\\ \Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+4\left(x^2-5x-2012\right)^2=0\\ \Leftrightarrow\left[2x^2+x-2013-2\left(x^2-5x-2012\right)\right]^2=0\\ \Leftrightarrow\left(11x+2011\right)^2=0\\ \Leftrightarrow11x+2011=0\\ \Leftrightarrow x=\dfrac{2011}{11}\)

15 tháng 6 2017

\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)( * )

Đặt \(a=2x^2+x-2013\)

\(\)Đặt \(b=x^2-5x-2012\)

Khi đó ( * ) trở thành:

\(a^2+4b^2=4ab\)

\(\Leftrightarrow a^2+4b^2-4ab=0\)

\(\Leftrightarrow a^2-4ab+4b^2=0\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a-2b=0\)

\(\Leftrightarrow a=2b\)

\(\Leftrightarrow2x^2+x-2013=2\left(x^2-5x-2012\right)\)

\(\Leftrightarrow2x^2+x-2013-2x^2+10x+4024=0\)

\(\Leftrightarrow11x+2011=0\)

\(\Leftrightarrow x=\dfrac{-2011}{11}\)

Vậy...

đặt: \(x=2x^2+x-2013\\ y=x^2-5x-2012\), khi đó:

\(x^2+4y^2=4xy\\ \Leftrightarrow x^2-4xy+y^2=0\\ \Leftrightarrow\left(x-2y\right)^2=0\Rightarrow x-2y=0\\ \Leftrightarrow x=2y\\ \Rightarrow2x^2+x-2013=2x^2-10x-4024\)

\(\Leftrightarrow11x=-2011\\ \Leftrightarrow x=-\dfrac{2011}{11}\)

vậy ........

4 tháng 3 2020

(x2 + x  + 1)(6 - 2x) = 0

<=> 6 - 2x = 0 (do x2 + x + 1 > 0)

<=> 2x = 6

<=> x = 3

Vậy S = {3}

(8x - 4)(x2 + 2x + 2) = 0

<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)

<=> 8x = 4

<=> x = 1/2 

Vậy S  = {1/2}

x3 - 7x + 6 = 0

<=> x3 - x - 6x + 6 = 0

<=> x(x2 - 1) - 6(x - 1) = 0

<=> x(x - 1)(x + 1) - 6(x - 1) = 0

<=> (x2 + x - 6)(x - 1) = 0

<=> (x2 + 3x - 2x - 6)(x - 1) = 0

<=> (x + 3)(x - 2)(x - 1) = 0

<=> x + 3 = 0

hoặc x - 2 = 0

hoặc x  - 1 = 0

<=> x = -3

hoặc x = 2

hoặc x = 1

Vậy S = {-3; 1; 2}

x5 - 5x3 + 4x = 0

<=> x(x4 - 5x2 + 4) = 0

<=> x(x4 - x2 - 4x2 + 4) = 0

<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0

<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0

<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x  + 1 = 0

<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1

Vậy S = {-2; -1; 0; 1; 2}

4 tháng 3 2020

+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

 - Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

  \(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)

Vậy \(S=\left\{3\right\}\)

+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

 - Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)

 - Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

   \(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

+ Ta có: \(x^3-7x+6=0\)

       \(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)

       \(\Leftrightarrow x^2.\left(x-1\right)+x.\left(x-1\right)-6.\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\) 

       \(\Leftrightarrow\left(x-1\right).\left[x.\left(x-2\right)+3.\left(x-2\right)\right]=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)

       \(\Leftrightarrow x=1\left(TM\right)\)hoặc \(x=2\left(TM\right)\)hoặc \(x=-3\left(TM\right)\)

 Vậy \(S=\left\{-3;1;2\right\}\)

 + Ta có: \(x^5-5x^3+4x=0\)

        \(\Leftrightarrow x.\left(x^4-5x^2+4\right)=0\)

       \(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)

       \(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)

       \(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)

       \(\Leftrightarrow x=0\left(TM\right)\)

hoặc  \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)

hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)

Vậy \(S=\left\{-2;-1;0;1;2\right\}\)

!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!