\(\frac{x+5}{65}+\frac{x+10}{60}=\frac{x+15}{35}+\frac{x+20}{50}\)

 <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

sai đề rồi nha...bạn thay dấu suy ra thành dấu tương đương giùm mik..mik bị nhầm

\(\frac{x+5}{65}+\frac{x+10}{60}=\frac{x+15}{35}+\frac{x+20}{50}\)

\(\Rightarrow\frac{x+5}{65}+\frac{x+10}{60}-\frac{x+15}{55}-\frac{x+20}{50}+2-2=0\)

\(\Rightarrow\left(\frac{x+5}{65}+1\right)+\left(\frac{x+10}{60}+1\right)-\left(\frac{x+15}{55}+1\right)-\left(\frac{x+20}{50}+1\right)=0\\ \)

\(\Rightarrow\left(\frac{x+5}{65}+\frac{65}{65}\right)+\left(\frac{x+10}{60}+\frac{60}{60}\right)-\left(\frac{x+15}{55}+\frac{55}{55}\right)-\left(\frac{x+20}{50}+\frac{50}{50}\right)=0\)

\(\Rightarrow\frac{x+70}{65}+\frac{x+70}{60}-\frac{x+70}{55}-\frac{x+70}{50}=0\)

\(\Rightarrow\left(x+70\right)\left(\frac{1}{65}+\frac{1}{60}-\frac{1}{55}-\frac{1}{50}\right)=0\)

\(\Rightarrow x+70=0\left(\frac{1}{65}+\frac{1}{60}-\frac{1}{55}-\frac{1}{50}\nè0\right)\)

\(\Leftrightarrow x=-70\)

học tốt...............nhớ k cho mik nha

24 tháng 1 2019

sai chỗ nào bạn đúng rồi mà

3 tháng 3 2016

\(\Leftrightarrow\frac{x+5}{65}+1+\frac{x+10}{60}+1=\frac{x+15}{55}+1+\frac{x+20}{50}+1\)

<=>\(\frac{x+70}{65}+\frac{x+70}{60}-\frac{x+70}{55}+\frac{x+70}{50}=0\)

<=>\(\left(x+70\right)\left(\frac{1}{65}+\frac{1}{60}-\frac{1}{55}-\frac{1}{50}\right)=0\Leftrightarrow x=-70\)

3 tháng 3 2016

mấy cái này có dấu hiệu nào để biết là +1 hay -1 hoặc +2 chẳng hạn

27 tháng 2 2020

Hỏi đáp ToánHỏi đáp Toán

27 tháng 2 2020

cảm ơn nha

13 tháng 2 2019

\(\Rightarrow\left(x-7\right)\left(x^2-x+1\right)=\left(x^2+1\right)\left(x+6\right)\)

\(\Leftrightarrow x^3-8x^2+8x-7=x^3+6x^2+x+6\)

\(\Leftrightarrow-8x^2+8x-7=6x^2+x+6\)

\(\Leftrightarrow14x^2-7x+13=0\)

Mà \(14x^2-7x+13=14\left(x-\frac{1}{4}\right)^2+\frac{97}{8}>0\forall x\)

Vậy phương trình có tập nghiệm: \(S=\varnothing\)

17 tháng 2 2019

có bạn nào giải hộ mình theo cách giải phương trình ko

hộ mình với

 
10 tháng 3 2020

\(a)\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{-3}{4}\left(x\ne-3;x\ne2\right)\)

\(\Leftrightarrow\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-4}{\left(x-2\right)\left(x+3\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)

<=> 4x-16=-3x+6

<=> 4x-16+3x-6=0

<=> 7x-22=0

<=> 7x=22

<=> \(x=\frac{22}{7}\)(TMĐK)
 

17 tháng 2 2021

\(A=\left(\frac{x^2-16}{x-4}-1\right):\left(\frac{x-2}{x-3}+\frac{x+3}{x+1}+\frac{x+2-x^2}{x^2-2x-3}\right)\)ĐK : \(x\ne3;-1;4\)

\(=\left(\frac{\left(x-4\right)\left(x+4\right)}{x-4}-1\right):\left(\frac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}+\frac{x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x-3\right):\left(\frac{x^2-x-2+x^2-9+x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)=\left(x-3\right):\left(\frac{x^2-9}{\left(x-3\right)\left(x-1\right)}\right)\)thơm thế :))

\(=\left(x-3\right):\left(\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-1\right)}\right)=\left(x-3\right).\frac{x-1}{x+3}=\frac{\left(x-3\right)\left(x-1\right)}{x+3}\)

17 tháng 2 2021

1) đk: \(x\ne\left\{-1;3;4\right\}\)

Ta có:

\(A=\left(\frac{x^2-16}{x-4}-1\right)\div\left(\frac{x-2}{x-3}+\frac{x+3}{x+1}+\frac{x+2-x^2}{x^2-2x-3}\right)\)

\(A=\left[\frac{\left(x-4\right)\left(x+4\right)}{x-4}-1\right]\div\frac{\left(x-2\right)\left(x+1\right)+\left(x+3\right)\left(x-3\right)+x+2-x^2}{\left(x+1\right)\left(x-3\right)}\)

\(A=\left(x+4-1\right)\div\frac{x^2-x-2+x^2-9-x^2+x+2}{\left(x+1\right)\left(x-3\right)}\)

\(A=\left(x+3\right)\div\frac{x^2-9}{\left(x+1\right)\left(x-3\right)}\)

\(A=\left(x+3\right)\cdot\frac{\left(x+1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=x+1\)

2) Ta có: \(\frac{A}{x^2+x+1}=\frac{x+1}{x^2+x+1}\)

Để \(\frac{A}{x^2+x+1}\) nguyên thì \(\left(x+1\right)⋮\left(x^2+x+1\right)\Leftrightarrow\left(x+1\right)^2⋮\left(x^2+x+1\right)\)

\(\Rightarrow\left(x+1\right)^2-\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)

\(\Rightarrow x⋮\left(x^2+x+1\right)\Rightarrow1⋮x^2+x+1\)

\(\Rightarrow x^2+x+1\in\left\{-1;1\right\}\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\orbr{\begin{cases}x=-1\left(ktm\right)\\x=0\left(tm\right)\end{cases}}\)

Vậy x = 0

26 tháng 1 2017

a, ĐKXĐ: x\(\ne\)5, x\(\ne\)0, x\(\ne\)-5

b, B = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

     = \(\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

     =\(\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2x^2-50}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

    = \(\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

    =\(\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)=\(\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)=\(\frac{x-1}{2}\)

Với B = 0 thì\(\frac{x-1}{2}\)=0 => x = 1

Với B = \(\frac{1}{4}\)thì \(\frac{x-1}{2}\)=\(\frac{1}{4}\)=> x = 1,5