![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,5,5-\left|x-0,4\right|=-1\frac{1}{5}\)
\(\Rightarrow5,5-\left|x-0,4\right|=-\frac{6}{5}\)
\(\Rightarrow-\left|x-0,4\right|=-\frac{6}{5}-5,5=-6,7\)
\(\Rightarrow\left|x-0,4\right|=6,7\)
\(\Rightarrow x-0,4=\pm6,7\)
\(\Rightarrow\orbr{\begin{cases}x-0,4=6,7\\x-0,4=-6,7\end{cases}\Rightarrow\orbr{\begin{cases}x=7,1\\x=-6,3\end{cases}}}\)
\(a,5,5-\left|x-0,4\right|=-1\frac{1}{5}\)
=> \(\left|x-0,4\right|=5,5-\left[-\frac{6}{5}\right]=5,5+1,2=6,7\)
=> \(\left|x-0,4\right|=\pm6,7\)
Xét hai trường hợp :
TH1 : x - 0,4 = 6,7
=> x = 6,7 + 0,4 = 7,1
TH2 : x - 0,4 = -6,7
=> x = -6,7 + 0,4 =-6,3
\(b,\left[1-\frac{3}{4}\left|x\right|\right]^2=\frac{16}{25}\)
=> \(\left[1-\frac{3}{4}\left|x\right|\right]=\pm\sqrt{\frac{16}{25}}\)
=> \(\left[1-\frac{3}{4}\left|x\right|\right]=\pm\frac{4}{5}\)
=> \(\orbr{\begin{cases}1-\frac{3}{4}\left|x\right|=\frac{4}{5}\\1-\frac{3}{4}\left|x\right|=-\frac{4}{5}\end{cases}}\)=> \(\orbr{\begin{cases}x=\pm\frac{4}{15}\\x=\pm\frac{12}{5}\end{cases}}\)
\(c,\left[0,1\left|x\right|-\frac{1}{2}\right]\left[0,5-\left|x\right|\right]=0\)
=> \(\orbr{\begin{cases}0,1\left|x\right|-\frac{1}{2}=0\\0,5-\left|x\right|=0\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{1}{10}\left|x\right|=\frac{1}{2}\\\left|x\right|=0,5\end{cases}}\)
=> \(\orbr{\begin{cases}\left|x\right|=5\\\left|x\right|=0,5\end{cases}}\)=> \(\orbr{\begin{cases}x\in\left\{5;-5\right\}\\x\in\left\{0,5;-0,5\right\}\end{cases}}\)
d, Xét hai trường hợp rồi ra kết quả thôi
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x}{9}< \frac{4}{7}< \frac{x+1}{9}\)
\(\Rightarrow\frac{7x}{63}< \frac{36}{63}< \frac{7x+7}{63}\)
\(\Rightarrow7x< 36< 7x+7\)
\(\Rightarrow x< \frac{36}{7}< x+1\)
\(\Rightarrow x< 5\frac{1}{7}< x+1\)
\(\Rightarrow x=5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(x+\frac{1}{3}=\frac{3}{4}\)
\(x=\frac{3}{4}-\frac{1}{3}=\frac{9}{12}-\frac{4}{12}\)
\(x=\frac{5}{12}\)
b, \(x-\frac{2}{5}=\frac{5}{7}\)
\(x=\frac{5}{7}+\frac{2}{5}=\frac{25}{35}+\frac{14}{35}\)
\(x=\frac{39}{35}\)
\(\frac{x+2}{x-1}=\frac{x-3}{x+1}\Leftrightarrow\left(x+2\right)\left(x+1\right)=\left(x-1\right)\left(x-3\right)\Leftrightarrow x^2+3x+2=x^2-4x+3\)
\(\Leftrightarrow x^2+3x+2-x^2+4x-3=0\Leftrightarrow7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\frac{1}{7}\)
=>(x+2)(x+1)=(x-1)(x-3)
x.x+x.1+2x+2.1=x.x-3x-1x+1.3
x2+x+2x+2=x2-3x-1x+3
x2+(x+2x)+2=x2+(-3x-1x)+3
x2+3x+2=x2-4x+3
x2+3x-x2+4x=3-2
(x2-x2)+(3x+4x)=1
7x=1
x=1/7