\(\frac{x-1}{2005}+\frac{x-2}{2004}-\frac{x-3}{2003}=\frac{x-4}{2002}\) Giúp...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

\(\frac{x-1}{2005}+\frac{x-2}{2004}-\frac{x-3}{2003}=\frac{x-4}{2002}\)

=>\(\frac{x-1}{2005}+\frac{x-2}{2004}-\frac{x-3}{2003}-\frac{x-4}{2004}=0\)

=>\(\left(\frac{x-1}{2005}-1\right)+\left(\frac{x-2}{2004}-1\right)-\left(\frac{x-3}{2003}-1\right)-\left(\frac{x-4}{2002}-1\right)=0\)

=>\(\frac{x-1-2005}{2005}+\frac{x-2-2004}{2004}-\frac{x-3-2003}{2003}-\frac{x-4-2002}{2002}=0\)

=>\(\frac{x-2006}{2005}+\frac{x-2006}{2004}-\frac{x-2006}{2003}-\frac{x-2006}{2002}=0\)

=>\(\left(x-2006\right)\left(\frac{1}{2005}+\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)

Mà \(\frac{1}{2005}+\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\ne0\)

=> x - 2006 = 0 => x = 2006

19 tháng 2 2018

x=-2007

22 tháng 8 2017

c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) 
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3

23 tháng 9 2016

\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

=> \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}-\frac{x-4}{2001}=0\)

=> \(\left(\frac{x-1}{2004}-1\right)+\left(\frac{x-2}{2003}-1\right)-\left(\frac{x-3}{2002}-1\right)-\left(\frac{x-4}{2001}-1\right)=0\)

=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)

=> \(\left(x-2005\right).\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Vì \(\frac{1}{2004}< \frac{1}{2002}\)\(\frac{1}{2003}< \frac{1}{2001}\)

=> \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)

=> \(x-2005=0\)

=> \(x=2005\)

Vậy \(x=2005\)

20 tháng 8 2017

\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

=>\(\frac{x-1}{2004}-1+\frac{x-2}{2003}-1-\frac{x-3}{2002}-1=\frac{x-4}{2001}-1\)

=> \(\frac{x-1-2004}{2004}+\frac{x-2-2003}{2003}-\frac{x-3-2002}{2002}=\frac{x-4-2001}{2001}\)

=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}=\frac{x-2005}{2001}\)

=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)

=> \(\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Do \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)

=> x - 2005 = 0 => x = 2005

7 tháng 2 2018

Ta có: \(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)

\(\Leftrightarrow\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\frac{x-3}{2002}-1+\frac{x-4}{2001}-1\)

\(\Leftrightarrow\frac{x-1-2004}{2004}+\frac{x-2-2003}{2003}=\frac{x-3-2002}{2002}+\frac{x-4-2001}{2001}\)

\(\Leftrightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)

\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Vì \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)

=> x - 2005 = 0

=> x             = 2005

Vậy x = 2005

=> (x - 1)/2004 - 1 + (x - 2)/2003 - 1 = (x - 3)/2002 -1 + (x - 4)/2001 - 1

=> (x - 2005)/2004 + (x - 2005)/2003 = (x - 2005)/2002 + (x - 2005)/2001

=> (x - 2005)/2004 + (x - 2005)/2003 - (x - 2005)/2002 - (x - 2005)/2001 = 0

=> (x - 2005) * ( 1/2004 + 1/2003 - 1/2002 - 1/2001) = 0

Ta thấy  ( 1/2004 + 1/2003 - 1/2002 - 1/2001) khác 0

=> x - 2005 = 0

=> x = 2005

     

1 tháng 2 2018

\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

\(\Leftrightarrow\)\(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-4}{2001}+\frac{x-3}{2002}\)

\(\Leftrightarrow\)\(\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\)\(\frac{x-4}{2001}-1+\frac{x-3}{2002}-1\)

\(\Leftrightarrow\)\(\frac{x-2005}{2004}+\frac{x-2005}{2003}\)\(=\frac{x-2015}{2001}+\frac{x-2005}{2002}\)

\(\Leftrightarrow\)\(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2001}-\frac{x-2005}{2002}=0\)

\(\Leftrightarrow\)( x - 2005 ) ( \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{2002}\))  =  0

Do  \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{2002}\)\(\ne\)0

\(\Rightarrow\)x  -   2005   =  0

\(\Leftrightarrow\)x  =  2005

Vậy  x  =  2005

21 tháng 11 2019

\(\frac{x+2005}{2004}-\frac{x+2005}{2001}=\frac{x+2005}{2002}-\frac{x+2005}{2003}\)

\(\frac{x+2005}{2004}-\frac{x+2005}{2001}+\frac{x+2005}{2003}-\frac{x+2005}{2002}=0\)

\(\left(x+2005\right).\left(\frac{1}{2004}-\frac{1}{2001}+\frac{1}{2003}-\frac{1}{2002}\right)=0\)

=> x + 2015 = 0

=> x = -2015

Vậy x = -2015

21 tháng 11 2019

TL :

\(\frac{x+2005}{2004}-\frac{x+2005}{2001}=\frac{x+2005}{2002}-\frac{x+2005}{2003}\)

\(\frac{x+2005}{2004}-\frac{x+2005}{2001}+\frac{x+2005}{2002}-\frac{x+2005}{2003}=0\)

Ta có : \(\left(x+2005\right).\left(\frac{1}{2004}-\frac{1}{2001}+\frac{1}{2003}-\frac{1}{2002}\right)=0\)

\(\Rightarrow x+2005=0\)

\(\Rightarrow x=-2005\)

19 tháng 11 2019

\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

\(\Leftrightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

De thay \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}< 0\Rightarrow x+2005=0\)

\(\Rightarrow x=-2005\)

19 tháng 11 2019

                              Bài giải

\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

\(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

\(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)

\(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Do : \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\) 

\(\Rightarrow\text{ }x+2005=0\)

\(x=0-2005\)

\(x=-2005\)