Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+2019\right)\left(x+2020\right)}\)
( ĐKXĐ : \(x\ne\left\{0;-1;-2;...;-2019;-2020\right\}\))
\(=\frac{1}{x}-\frac{1}{\left(x+1\right)}+\frac{1}{\left(x+1\right)}-\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+2\right)}-\frac{1}{\left(x+3\right)}+...+\frac{1}{\left(x+2019\right)}-\frac{1}{\left(x+2020\right)}\)
\(=\frac{1}{x}-\frac{1}{x+2020}\)
\(=\frac{x+2020}{x\left(x+2020\right)}-\frac{x}{x\left(x+2020\right)}\)
\(=\frac{x+2020-x}{x\left(x+2020\right)}\)
\(=\frac{2020}{x\left(x+2020\right)}\)
Bài giải
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2019\right)\left(x+2020\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2019}-\frac{1}{x+2020}\)
\(=\frac{1}{x}-\frac{1}{x+2020}\)
\(=\frac{x+2020}{x\left(x+2020\right)}-\frac{x}{x+2020}=\frac{2020}{x\left(x+2020\right)}\)
Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:
\(f\left(2019\right)=2020;f\left(2020\right)=2021\)
CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số
Ta có: |x - 2019| ≥ 0 => |x - 2019|2019 ≥ 0
|x - 2020| ≥ 0 => |x - 2020|2020 ≥ 0
+) TH1: \(\hept{\begin{cases}\left|x-2019\right|^{2019}=0\\\left|x-2020\right|^{2020}=1\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=0\\\left|x-2020\right|=1\end{cases}}\Rightarrow\hept{\begin{cases}x-2019=0\\\left|x-2020\right|=1\end{cases}\Rightarrow}\hept{\begin{cases}x=2019\\\left|x-2020\right|=1\end{cases}}\)
Giải: |x - 2020| = 1
TH1: x - 2020 = 1 => x = 2021
TH2: x - 2020 = -1 => x = 2019
Vì 2021 ≠ 2019
=> x = 2019
+) TH2: \(\hept{\begin{cases}\left|x-2019\right|^{2019}=1\\\left|x-2020\right|^{2020}=0\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=1\\\left|x-2020\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2019\right|=1\\x-2020=0\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=1\\x=2020\end{cases}}\)
Giải |x - 2019| = 1
Th1: x - 2019 = 1 => x = 2020
Th2: x - 2019 = -1 => x = 2018
Vì 2018 ≠ 2020
=> x = 2020
Vậy x \(\in\){ 2020; 2019 }
P/s: Ko chắc :)
Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)
ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa
đâu có đâu bạn ???
Mình dùng công cụ công thức của hoc24.vn mà
Bạn đợi chút nó sẽ load ra liền