\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{7^x.\left(7^2+7+1\right)}{57}=7^x\)

\(\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}=\frac{5^{2x}\left(1+5+5^3\right)}{131}=\frac{25^x.131}{131}=25^x\)

\(\Rightarrow7^x=25^x\Rightarrow x=0\)

11 tháng 7 2018

ai tích mình mình tích lại cho

17 tháng 5 2016

\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)

\(\frac{7^x\left(7^2+7^1+1\right)}{57}=\frac{5^{2x}\left(1+5^1+5^3\right)}{131}\)

\(\frac{7^x\left(49+7+1\right)}{57}=\frac{5^{2x}\left(1+5+125\right)}{131}\)

\(\frac{7^x\times57}{57}=\frac{5^{2x}\times131}{131}\)

\(7^x=25^x\)

\(x=0\)

Chúc bạn học tốtok

30 tháng 9 2018

Biến đổi vế trái, ta được : \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{7^x\left(7^2+7+1\right)}{57}=\frac{7^x.57}{57}=7^x\)\(=7^x\)

Biến đổi vế phải, ta được : \(\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}=\frac{5^{2x}.\left(1+5+5^3\right)}{131}=\frac{5^{2x}.131}{131}=5^{2x}=25^x\)

\(\Rightarrow7^x=25^x\)

Vì \(\left(7,25\right)=1\)

\(\Rightarrow7^x=25^x=1\)

\(\Rightarrow x=0\)

Vậy \(x=0\)

1 tháng 9 2016

\(\frac{7^x\left(7^2+7+1\right)}{57}=\frac{5^{2x}\left(1+5+5^3\right)}{131}\)

\(\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)

\(7^x=5^{2x}\)khi và chỉ khi x = 0.

25 tháng 6 2020

\(\frac{7^{x+2}+7^{x+1}+7x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)

\(\Rightarrow\frac{7x\left(7^2+7^1+1\right)}{57}=\frac{5^{2x}\left(1+5^1+5^3\right)}{131}\)

\(\Rightarrow\frac{7x\left(49+7+1\right)}{57}=\frac{5^{2x}\left(1+5+125\right)}{131}\)

\(\Rightarrow\frac{7x.57}{57}=\frac{5^{2x}.131}{131}\)

\(\Rightarrow7x=25x\)

\(\Rightarrow x=0\)

25 tháng 6 2020

\(\left(4x-3\right)^4=\left(4x-3\right)^2\)

\(\Rightarrow\left(4x-3\right)^4-\left(4x-3\right)^2=0\)

\(\Rightarrow\left(4x-3\right)^2\left[\left(4x-3\right)^2-1\right]=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(4x-3\right)^2=0\\\left(4x-3\right)^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x-3=0\\4x-3=-1\\4x-3=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\x=\frac{1}{2}\\x=1\end{cases}}\)