Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
ta có \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
Suy ra 1 trong 3 nhân tử phải bằng 0
xét từng trường hợp rồi làm tiếp
Bạn tìm GTLN ở vế trái là 3 và GTNN ở vế phải là 3
Dấu "=" xảy ra khi x = 1 và y = 2
Đó chính là x,y thỏa mãn đề bài.
Ta sẽ CM bổ đề (I): Với mọi số thực a, b thì \(\left|a\right|+\left|b\right|\ge\left|a+b\right|.\)
CM: (I) \(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a+b\right|^2\)\(\Leftrightarrow\left|a\right|^2+\left|b\right|^2+2\left|ab\right|\ge\left(a+b\right)^2\)\(\Leftrightarrow a^2+b^2+2\left|ab\right|\ge a^2+b^2+2ab\)\(\Leftrightarrow2\left|ab\right|\ge2ab\)\(\Leftrightarrow\left|ab\right|\ge ab\)(đúng do tính chất của giá trị tuyệt đối - GTTĐ).
Đẳng thức xảy ra khi \(ab\ge0.\)
Ta trở lại giải bài toán ban đầu.
Với mọi số thực x, ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\Rightarrow\frac{6}{\left(x-1\right)^2+2}\le3\left(1\right).\)
Với mọi số thực y, áp dụng bổ đề (I) và tính chất của GTTĐ ta có:
\(\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1=\left(\left|y-1\right|+\left|3-y\right|\right)+\left|y-2\right|+1\)\(\ge\left|y-1+3-y\right|+0+1=\left|2\right|+1=3\left(2\right).\)
Từ (1) và (2) suy ra vế trái \(\le3\), vế phải \(\ge3\)theo đề bài, 2 vế đều phải bằng nhau, từ đó suy ra vế trái và vế phải đều bằng 3.
Điều đó xảy ra khi và chỉ khi:
- \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1.\)
- \(\hept{\begin{cases}\left(y-1\right)\left(3-y\right)\ge0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(y-1\right)\left(3-y\right)\ge0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(y-1\right)\left(3-y\right)\ge0\\y=2\end{cases}}\Leftrightarrow y=2.}\)
Thử lại với x = 1, y = 2 thấy thoả mãn.
Vậy x = 1, y = 2.
a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)
\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)
b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)
c Tương tự b
2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)
\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)
Xét ước
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~
( x - 2 )2012 + | y2 - 9 |2014 = 0 ( 1 )
vì ( x - 2 )2012 \(\ge\)0 ; | y2 - 9 |2014 \(\ge\)0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy x = 2 ; y = 3
còn lại tương tự
Vì (x -2 )2012> hoặc =0 mà |y2 -9 |2014 > hoặc =0 nên để (x -2 )2012 + | y2 -9 |2014 =0 thì (x-2)2012 =0 và |y2 -9| =0
=>( x-2)=0 và y2-9=0
=>x=0 và y2=9
=>x=o và y=3 hoặc x= -3
a) \(5^{3x+1}=25^{x+2}\)
\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)
\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)
\(\Leftrightarrow3x+1=2x+4\)
\(\Leftrightarrow3x-2x=4-1\)
\(\Leftrightarrow x=3\)
Ta có: VP=|y-1|+|y-2|+|y-3|+1=(|y-1|+|3-y|)+|y-2|+1\(\ge\left|y-1+3-y\right|+\left|y-2\right|+1=\left|y-2\right|+3\ge3\)
vì \(\left|y-2\right|\ge0\)với mọi y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(y-1\right)\left(3-y\right)\ge0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le y\le3\\y=2\end{cases}\Leftrightarrow}y=2\)
VT=\(\frac{6}{\left(x-1\right)^2+2}\le\frac{6}{2}=3\)
Vì \(\left(x-1\right)^2\ge0\)=> \(\left(x-1\right)^2+2\ge2\)với mọi x
'=" xảy ra khi x-1=0 <=> x=1
Như vậy VT\(\le3,VP\ge3\)
Để VT=VP , khi đó VT=VP=3
<=> x=1, y=2