\(\frac{1}{2}+\frac{-3}{4}< x\le\frac{1}{5}+1\frac{4}{5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

Ta có  : 

\(\frac{1}{2}+-\frac{3}{4}< x\le\frac{1}{5}+1\frac{4}{5}\)

\(\Rightarrow\frac{2}{4}+-\frac{3}{4}< x\le\frac{1}{5}+\frac{9}{5}\)

\(\Rightarrow\frac{-1}{4}< x\le\frac{10}{5}\)

\(\Rightarrow\frac{-1}{4}< x\le2\)

Mà  \(x\in Z\)

\(\Rightarrow x\in\left\{0;1;2\right\}\)

28 tháng 5 2018

Đ/k x thiếu : 

x thuộc Z là mik tự nghĩ ra đấy

15 tháng 3 2019

\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)

\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)

\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)

\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)

\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)

\(\Rightarrow-1\le x< 6\)

\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)

Bài b tương tự

17 tháng 3 2019

bạn ơi bạn giải câu b được ko. mk ko biết làm câu b

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

9 tháng 3 2019

\(\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}-\frac{1}{5}\le x< \frac{-3}{4}+\frac{2}{7}-\frac{1}{4}+\frac{3}{5}+\frac{5}{7}\)

\(=\frac{1.10}{3.10}+\frac{-2.6}{5.6}+\frac{1.5}{6.5}-\frac{1.6}{5.6}\le x< \frac{-3.35}{4.35}+\frac{2.20}{7.20}-\frac{1.35}{4.35}+\frac{3.28}{5.28}+\frac{5.20}{7.20}\)

\(=\)\(\frac{10}{30}+\frac{-12}{30}+\frac{5}{30}-\frac{6}{30}\le x< \frac{-105}{140}+\frac{40}{140}-\frac{35}{140}+\frac{84}{140}+\frac{100}{140}\)

\(=\)\(\frac{10+\left(-12\right)+5-6}{30}\le x< \frac{-105+40-35+84+100}{140}\)

\(=\)\(\frac{-3}{30}\le x< \frac{84}{140}\)

\(=\)\(\frac{-3.14}{30.14}\le x< \frac{84.3}{140.3}\)

\(=\)\(\frac{-42}{420}\le x< \frac{252}{420}\)

\(\Rightarrow-42\le x< 252\)

\(\Rightarrow x=\left\{-42;-41;-41;...;249;250;251;252\right\}\)

   Chúc bạn một buổi chiều vui vẻ ~! ❤‿❤

   Nếu có sai gì thì báo lỗi với mình nhé!

9 tháng 3 2019

Cái bước thứ hai từ dưới lên sai rồi nhé em! KHông đc vứt mẫu số như vậy :)