\(\frac{1}{20}\)+\(\frac{1}{44}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

\(\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+...+\frac{2}{x\left(x+3\right)}=\frac{101}{770}\)
\(\Rightarrow\)\(\frac{3}{2}.\left(\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+...+\frac{2}{x\left(x+3\right)}\right)=\frac{101}{770}\)
\(\Rightarrow\)\(\frac{3}{40}+\frac{3}{88}+\frac{3}{154}+...+\frac{3}{x\left(x-3\right)}=\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x-1}\)
\(\Rightarrow\)\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{308}{1540}-\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{5}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\)\(\frac{1}{308}\)
\(\Rightarrow\)\(x+3=308\)
\(\Rightarrow\)\(x=308-3\)
\(\Rightarrow\)\(x=305\)

26 tháng 12 2017

a) Đặt \(A=\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+.....+\frac{1}{\left(x-2\right)x}+\frac{1}{x\left(x+2\right)}\)

=> \(3A=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+.....+\frac{3}{\left(x-2\right)x}+\frac{3}{x\left(x+2\right)}\)

=> \(3A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{\left(x-2\right)}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+2}\)

=> 3A = \(\frac{1}{5}-\frac{1}{x+2}\)

=> A = \(\frac{1}{15}-\frac{1}{3x+6}\)

Mà : A = \(\frac{101}{1540}\)

=> \(\frac{1}{15}-\frac{1}{3x+6}=\frac{101}{1540}\)

=> \(\frac{1}{3x+6}=\frac{1}{15}-\frac{101}{1540}=\frac{1}{924}\)

=> 3x + 6 = 924

=> 3(x + 2) = 924

=> x + 2 = 308

=> x = 306

26 tháng 12 2017

a) Ta có: \({{1} \over x(x+2)}= {{1} \over 3}({{1} \over x}-{{1} \over x+2})\)  \(\Rightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over 8}+{{1} \over 8}-...+{{1} \over x}-{{1} \over x+2})={{101} \over 1540} \)\(\Leftrightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over x+2})={{101} \over 1540}\)\(\Leftrightarrow\)x+2 = 308 \(\Leftrightarrow\) x=306 Lúc sau lm hơi tắt mọi người thông cảm

18 tháng 3 2017

a, \(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)

=> x + 3 = 308

     x = 308 - 3

     x = 305

b, \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=1\frac{1991}{1993}\)

\(\Rightarrow\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{1}{2}.\frac{3984}{1993}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1992}{1993}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1992}{1993}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1992}{1993}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{1992}{1993}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{1992}{1993}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{1993}\)

=> x + 1 = 1993

     x = 1993 - 1

     x = 1992

18 tháng 3 2017

a ,\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}.3\)

\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(x=308-3\)

\(x=305\)

20 tháng 8 2020

câu a sai đề nha

20 tháng 8 2020

a, \(\frac{x}{5}=\frac{2}{3}\Leftrightarrow x=\frac{10}{3}\)

b, \(\frac{x}{-24}=\frac{20}{42}\Leftrightarrow x=-\frac{80}{7}\)

c, \(\frac{x+3}{15}=\frac{1}{3}\Leftrightarrow3x+9=15\Leftrightarrow x=2\)

d, \(\frac{2}{3}x-\frac{3}{2}x=\frac{5}{12}\Leftrightarrow x\left(\frac{2}{3}-\frac{3}{2}\right)=\frac{5}{12}\Leftrightarrow-\frac{5}{6}x=\frac{5}{12}\Leftrightarrow x=-\frac{1}{2}\)

21 tháng 2 2017

a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

Vậy x = 305

4 tháng 7 2018

a, \(\dfrac{1}{5.8}\)+\(\dfrac{1}{8.11}\)+\(\dfrac{1}{11.14}\)+...+\(\dfrac{1}{x\left(x+3\right)}\)=\(\dfrac{101}{1540}\)

\(\dfrac{1}{3}\)(\(\dfrac{3}{5.8}\)+\(\dfrac{3}{8.11}\)+\(\dfrac{3}{11.14}\)+...+\(\dfrac{3}{x\left(x+3\right)}\))=\(\dfrac{101}{1540}\)

\(\dfrac{1}{3}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{11}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+3}\))=\(\dfrac{101}{1540}\)

\(\dfrac{1}{3}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\))=\(\dfrac{101}{1540}\)

\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\)=\(\dfrac{101}{1540}\) : \(\dfrac{1}{3}\)

\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\)=\(\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}\)=\(\dfrac{1}{5}\)-\(\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}\)=\(\dfrac{1}{308}\)

<=>1(x+3)=308.1

<=>1(x+3)=308

<=> x+3=308:1

<=> x+3=308

<=> x=308-3

<=> x=305

b,1+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{1}{x\left(x+1\right):2}\)=1\(\dfrac{1991}{1993}\)

\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{3984}{1993}\)\(2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3984}{1993}\)

\(2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{3984}{1993}\)

\(2\left(1-\dfrac{1}{x+1}\right)=\dfrac{3984}{1993}\)

\(1-\dfrac{1}{x+1}=\dfrac{3984}{1993}:2\)

\(1-\dfrac{1}{x+1}=\dfrac{1992}{1993}\)

\(\dfrac{1}{x+1}=1-\dfrac{1992}{1993}\)

\(\dfrac{1}{x+1}=\dfrac{1}{1993}\)

<=>1(x+1)=1993.1

<=>1(x+1)=1993

<=> x+1=1993 : 1

<=> x+1=1993

<=> x=1993-1

<=> x=1992

28 tháng 11 2018

\(a)\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x(x+3)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left[(\frac{1}{5}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3})\right]=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left[\frac{1}{5}-\frac{1}{x+3}\right]=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{5}{1540}=\frac{1}{308}\)

\(\Rightarrow x+3=308\Rightarrow x=305\)

\(b)x-(\frac{50x}{100}-\frac{25x}{200})=\frac{45}{4}\)

\(\Rightarrow x-(\frac{100x}{200}-\frac{25x}{200})=\frac{45}{4}\)

\(\Rightarrow x-\frac{5x}{8}=\frac{45}{4}\)

\(\Rightarrow\frac{3x}{8}=\frac{45}{4}\)

\(\Rightarrow3x=\frac{45}{4}\cdot8\)

\(\Rightarrow3x=90\Rightarrow x=30\)

\(c)1+2+3+4+...+x=820\)

Ta có : \(1+2+3+4+...+x=\frac{(1+x)\cdot x}{2}\)

Do đó : \(\frac{(1+x)\cdot x}{2}=820\)

\(\Rightarrow(1+x)\cdot x=820\cdot2\)

\(\Rightarrow(1+x)\cdot x=1640\)

\(\Rightarrow(1+x)\cdot x=40\cdot41\)

Vì x và x + 1 là hai số tự nhiên liên tiếp nên => x = 40

Chúc bạn học tốt :3

10 tháng 7 2016

13659041_295244724156802_7351476118327087661_n.jpg?oh=bb176b2bca26bb76e4d642ff1d999878&oe=58307552

đang giải mà nó hư bạn ghép phần đó vs phần dưới này nha, ko nhìn thấy thì đè nút ctrl rồi nhấn + cho to lên nha

\(\Rightarrow x-1=\frac{4}{3}\Rightarrow x=\frac{7}{3}\)