Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a, 1/3 + 1/2 : x = -4
=> 1/2 : x = -4 - 1/3
=> 1/2 : x = -13/3
=> x = 1/2 ; -13/3
=> x = -3/26
Vậy x = -3 / 26
Bài 2:
b, x2 - 4x = 0
=> x.(x - 4) =0
=> x=0 hoặc x - 4 = 0
x - 4= 0 => x=4
Vậy x=0 và x=4
a) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.........+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.......+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)
\(\Leftrightarrow2.\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{x\left(x+1\right)}\right]=\frac{1998}{2000}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{x\left(x+1\right)}=\frac{999}{2000}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{x}-\frac{1}{x+1}=\frac{999}{2000}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{999}{2000}\)\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2000}\)
\(\Leftrightarrow x+1=2000\)\(\Leftrightarrow x=1999\)
Vậy \(x=1999\)
b) \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{15.2}{93}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+......+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)\(\Leftrightarrow2x+3=93\)
\(\Leftrightarrow2x=90\)\(\Leftrightarrow x=45\)
Vậy \(x=45\)
2: =>2x-1/4=5/6-1/2x
=>5/2x=5/6+1/4=13/12
=>x=13/30
3: =>3x-5/6=2/3-1/2x
=>3,5x=2/3+5/6=4/6+5/6=9/6=3,2
hay x=32/35
deex vậy
Ta có:
\(\left(\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{10}{10.110}\right)x=\)\(\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
\(\Rightarrow\left(\frac{100}{1.101}+\frac{100}{2.202}+\frac{100}{3.303}+...+\frac{100}{10.101}\right)x=\)\(10.\left(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{100.110}\right)\)
\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=\)\(10.\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)
\(\Rightarrow\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{110}\right)\right]x\)\(=\)\(10.\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)\right]\)
\(\Rightarrow\left[ \left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]x=\)\(10.\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)
\(\Rightarrow x=10\)