\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Đặt \(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}=k\)

\(\Rightarrow x-18=k.\left(x+4\right)\Rightarrow x=\dfrac{4k+18}{1-k}\left(1\right)\)

\(x-17=k.\left(x+16\right)\Rightarrow x=\dfrac{16k+17}{1-k}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow4k+18=16k+17\Rightarrow-12k=-1\Rightarrow k=\dfrac{1}{12}\)

\(\Rightarrow x=\dfrac{4.\dfrac{1}{12}+18}{1-\dfrac{1}{12}}=\dfrac{\dfrac{55}{3}}{\dfrac{11}{12}}=20\)

Vậy x = 20

30 tháng 7 2018

\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\)

(x\(-\)18).(x+16)=(x-17).(x+4)

x\(^2\)-18x+16x-18.16=x\(^2\)-17x+4x-4.17

x\(^2\)-18x+16x-288=x\(^2\)-17x+4x-68

x\(^2\)-18x+16x-x\(^2\)+17x-4x=-68+288

11x=220

x=220/11

x=20

27 tháng 7 2018

\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\)

⇒ (x-18) . (x+16) = (x-17) . (x+4)

x(x+16) -18(x+16) = x(x+4) - 17(x+4)

\(x^2+16x-18x-288=x^2+4x-17x-68\)

\(x^2+16-18x-x^2-4x+17x=-68+288\)

11x=220

x= 220 : 11

x = 20

27 tháng 7 2018

\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\)

\(\Leftrightarrow\left(x-18\right)\left(x+16\right)=\left(x-17\right)\left(x+4\right)\)

\(\Leftrightarrow x^2-2x-288=x^2-13x-68\)

\(\Leftrightarrow220=11x\)

\(\Leftrightarrow x=20\)

\(\)

8 tháng 12 2018

Cậu không làm được hay cần gấp con nào nhỉ ?

Bài 1:

a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)

=>2x-10=x+2

=>x=12

b: \(\Leftrightarrow\left(x+2\right)^2=100\)

=>x+2=10 hoặc x+2=-10

=>x=-12 hoặc x=8

c: \(\Leftrightarrow\left(2x-5\right)^3=27\)

=>2x-5=3

=>2x=8

=>x=4

9 tháng 9 2018

Bài 1.

Giải

a) Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-12+21}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để \(A\in Z\) thì \(\dfrac{21}{n-4}\in Z\)

\(\Rightarrow21⋮\left(n-4\right)\)

\(\Rightarrow\left(n-4\right)\inƯ\left(21\right)\)

\(\Rightarrow\left(n-4\right)\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bẳng sau:

\(n-4\) \(-21\) \(-7\) \(-3\) \(-1\) \(1\) \(3\) \(7\) \(21\)
\(n\) \(-17\) \(-3\) \(1\) \(3\) \(5\) \(7\) \(11\) \(25\)

Vậy \(n\in\left\{-17;-3;1;3;5;7;11;25\right\}\) thì \(A\in Z.\)

b) Ta có: \(B=\dfrac{6n+5}{2n-1}=\dfrac{6n-3+8}{2n-1}=\dfrac{3\left(2n-1\right)+8}{2n-1}=3+\dfrac{8}{2n-1}\)

Để \(B\in Z\) thì \(\dfrac{8}{2n-1}\in Z\)

\(\Rightarrow8⋮\left(2n-1\right)\)

\(\Rightarrow\left(2n-1\right)\inƯ\left(8\right)\)

\(\Rightarrow\left(2n-1\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng sau:

\(2n-1\) \(-8\) \(-4\) \(-2\) \(-1\) \(1\) \(2\) \(4\) \(8\)
\(2n\) \(-7\) \(-3\) \(-1\) \(0\) \(2\) \(3\) \(5\) \(9\)
\(n\) \(\dfrac{-7}{2}\) \(\dfrac{-3}{2}\) \(\dfrac{-1}{2}\) \(0\) \(1\) \(\dfrac{3}{2}\) \(\dfrac{5}{2}\) \(\dfrac{9}{2}\)

Vậy \(n\in\left\{\dfrac{-7}{2};\dfrac{-3}{2};\dfrac{-1}{2};0;1;\dfrac{3}{2};\dfrac{5}{2};\dfrac{9}{2}\right\}\)

9 tháng 9 2018

Bạn Nguyen Thi Huyen giải bài 1 rồi nên mình giải tiếp các bài kia nhé!

Bài 2:

\(\dfrac{x-18}{2000}+\dfrac{x-17}{2001}=\dfrac{x-16}{2002}+\dfrac{x-15}{2003}\)

\(\Leftrightarrow\left(\dfrac{x-18}{2000}-1\right)+\left(\dfrac{x-17}{2001}-1\right)=\left(\dfrac{x-16}{2002}-1\right)+\left(\dfrac{x-15}{2003}-1\right)\)

\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}=\dfrac{x-2018}{2002}+\dfrac{x-2018}{2003}\)

\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}-\dfrac{x-2018}{2002}-\dfrac{x-2018}{2003}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

Dễ thấy \(\dfrac{1}{2000}>\dfrac{1}{2001}>\dfrac{1}{2002}>\dfrac{1}{2003}\) nên:

\(\dfrac{1}{2000}+\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\ne0\). Do đó:

\(x-2018=0\Leftrightarrow x=2018\)

Bài 3:

a) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{20}{4x}+\dfrac{xy}{4x}=\dfrac{20+xy}{4x+4x}=\dfrac{20+xy}{8x}=\dfrac{1}{8}\)

Hoán vị ngoại tỉ ta có: \(\dfrac{20+xy}{8x}=\dfrac{1}{8}\Leftrightarrow\dfrac{8}{8x}=\dfrac{1}{x}=\dfrac{1}{8}\Leftrightarrow x=8\)

Thế x = 8 vào : \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\) .Ta có: \(\dfrac{5}{8}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{y}{4}=\dfrac{1}{8}-\dfrac{5}{8}=\dfrac{-2}{4}\). Ta có: \(\dfrac{y}{4}=\dfrac{-2}{4}\Leftrightarrow y=-2\)

Vậy: \(\left[{}\begin{matrix}x=8\\y=-2\end{matrix}\right.\)

b) \(\dfrac{1}{x}-\dfrac{2}{y}=\dfrac{3}{1}\Rightarrow\dfrac{y}{x}-2=\dfrac{3}{1}\) (hoán vị ngoại tỉ)

\(\Leftrightarrow\dfrac{y}{x}=\dfrac{5}{1}\). Suy ra nghiệm x,y có dạng \(\left[{}\begin{matrix}x=1k\\y=5k\end{matrix}\right.\left(k\in Z\right)\). Bằng các phép thử lại ta dễ dàng suy ra x,y vô nghiệm.

9 tháng 8 2017

\(\dfrac{x}{4}=\dfrac{18}{x+1};x^2+1=72\)

\(\)\(\Rightarrow x\left(x+1\right)=18.4\)

\(\Rightarrow x^2+x=72\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+1=72\\x^2+x=72\end{matrix}\right.\)

\(\Rightarrow x^2+1=x^2+x\)

\(\Rightarrow x=1\)

11 tháng 8 2017

thanks, bn cs thể làm giúp mik phần b nữa đc hông?

30 tháng 8 2017

\(\dfrac{x-1}{50}+\dfrac{x-2}{49}=\dfrac{x-3}{48}+\dfrac{x-4}{47}\)

\(\Rightarrow\dfrac{x-1}{50}-1+\dfrac{x-2}{49}-1=\dfrac{x-3}{48}-1+\dfrac{x-4}{47}-1\)

\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}=\dfrac{x-51}{48}+\dfrac{x-51}{47}\)

\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}-\dfrac{x-51}{48}-\dfrac{x-51}{47}=0\)

\(\Rightarrow\left(x-51\right)\left(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\right)=0\)

\(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\ne0\) nên \(x-51=0\Rightarrow x=51\)

\(\dfrac{x+25}{6}+\dfrac{x+20}{11}+\dfrac{x+16}{15}+3=0\)

\(\Rightarrow\dfrac{x+25}{6}+1+\dfrac{x+20}{11}+1+\dfrac{x+16}{15}+1=0\)

\(\Rightarrow\dfrac{x+31}{6}+\dfrac{x+31}{11}+\dfrac{x+31}{15}=0\)

\(\Rightarrow\left(x+31\right)\left(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\right)=0\)

\(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\ne0\) nên \(x+31=0\Rightarrow x=-31\)

\(\dfrac{x-15}{6}+\dfrac{x-10}{11}=\dfrac{x-3}{18}+\dfrac{x-7}{14}\)

\(\Rightarrow\dfrac{x-15}{6}-1+\dfrac{x-10}{11}-1=\dfrac{x-3}{18}-1+\dfrac{x-7}{14}-1\)

\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}=\dfrac{x-21}{18}+\dfrac{x-21}{14}\)

\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}-\dfrac{x-21}{18}-\dfrac{x-21}{14}=0\)

\(\Rightarrow\left(x-21\right)\left(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\right)=0\)

\(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\ne0\) nên \(x-21=0\Rightarrow x=21\)

30 tháng 8 2017

lần sau nhớ ghi rõ các phần ra , nhìn thek này phân biệt hơi khó :v

22 tháng 9 2018

3, Tìm x, biết

\(d,\dfrac{-16}{x}=\dfrac{x}{-4}=>x^2=\left(-16\right).\left(-4\right)=>x^2=64\)

\(=>x=8\) hay \(x=-8\)

\(e,\dfrac{x}{-2}=\dfrac{\dfrac{8}{25}}{-x}=>-x^2=-2.\dfrac{8}{5}=\dfrac{-16}{25}\)

\(=>-x^2=0,64=>x=0,8\)

\(g,\dfrac{x}{-15}=\dfrac{-60}{x}\)

\(=>x^2=\left(-15\right).\left(-60\right)\)\(=>x^2=900=>x=30\) hay \(x=-30\)

22 tháng 9 2018

d) \(\dfrac{-16}{x}=\dfrac{x}{-4}\)

= 16 . 4 = x.x

= 64 = \(x^2\)

= \(8^2=x^2\)

vậy x = 8

e)\(\dfrac{x}{-2}=\dfrac{8}{\dfrac{25}{-x}}\)

= -2 . \(\dfrac{8}{25}\) = -x . x

= -0,64 = \(-x^2\)

= 0,64 = \(x^2\)

0,8\(^2=x^2\)

vậy x = 0,8

g) \(\dfrac{x}{-15}=\dfrac{-60}{x}\)

= -15 . -60 = x.x

= 900 = \(x^2\)

30 \(^2=x^2\)

vậy x = 30

18 tháng 5 2017

Mình chỉ giải câu a thôi,mấy câu còn lại dễ.

a)Ta có:\(\dfrac{x}{27}=\dfrac{-3}{x}\)

=>\(x^2=-3\cdot27=-81\)(Nhân chéo)

Mà x2>0 với mọi x nên :

Không có giá trị nào thỏa mãn điều kiện của x

18 tháng 5 2017

Tìm x biết :

a) \(\dfrac{x}{27}=-\dfrac{3}{x}\) \(\Rightarrow2x=-3.27\Rightarrow2x=-81\Rightarrow x=-40,5\)

b) \(-\dfrac{9}{x}=-\dfrac{x}{\dfrac{4}{49}}\Rightarrow2x=-9.\left(-\dfrac{4}{9}\right)\Rightarrow2x=4\Rightarrow x=2\)

c) \(\left|7x-\dfrac{5}{3}\right|+\dfrac{7}{19}=-\dfrac{8}{15}\) ( mk nghĩ bn chép sai đề bài câu này )

\(\Rightarrow\left|7x-\dfrac{5}{3}\right|=-\dfrac{8}{15}-\dfrac{7}{19}\)

\(\Rightarrow\left|7x-\dfrac{5}{3}\right|=-\dfrac{257}{285}\)

\(\Rightarrow\left[{}\begin{matrix}7x-\dfrac{5}{3}=-\dfrac{257}{285}\\7x-\dfrac{5}{3}=\dfrac{257}{285}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{218}{1995}\\x=\dfrac{244.}{665}\end{matrix}\right.\)

d) \(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=\dfrac{18}{19}-1\dfrac{2}{5}\)

\(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=-\dfrac{43}{95}\)

\(\left|\dfrac{1}{23}x\right|=-\dfrac{43}{95}-\dfrac{18}{90}\)

\(\left|\dfrac{1}{23}x\right|=-\dfrac{62}{95}\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{23}x=\dfrac{62}{95}\\\dfrac{1}{23}x=-\dfrac{62}{95}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=15\dfrac{1}{95}\\x=-15\dfrac{1}{95}\end{matrix}\right.\)

23 tháng 11 2017

Bài 4 câu c) và x-y+y hay x-y+z vậy bạn

24 tháng 11 2017

1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)

25 tháng 8 2017

a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{5}=\dfrac{y}{7}=\dfrac{y-2x}{7-5}=\dfrac{24}{2}=12\)

\(\Rightarrow2x=12\cdot5=60\Rightarrow x=60:2=30\)

\(y=12\cdot7=84\)

Vậy x = 30 ; y = 84

b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+3y}{3+2\cdot3}=\dfrac{18}{9}=2\)

\(\Rightarrow x=2\cdot3=6\)

\(y=2\cdot2=4\)

Vậy x = 6 ; y = 4

c. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

\(\Rightarrow x=2\cdot2=4\)

\(y=3\cdot2=6\)

\(z=4\cdot2=8\)

Vậy x = 4 ; y = 6 ; z = 8

d. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y-z}{2-3-4}=\dfrac{15}{-5}=-3\)

\(\Rightarrow x=-3\cdot2=-6\)

\(y=-3\cdot3=-9\)

\(z=-3\cdot4=-12\)

Vậy \(x=-4;y=-6;z=-8\)