\(\dfrac{\left(-7\right)^{2x-1}}{49}=-343\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(-7\right)^{2x-1}=\left(-7\right)^3\cdot\left(-7\right)^2=\left(-7\right)^5\)

=>2x-1=5

=>2x=6

hay x=3

a: \(\Leftrightarrow7^x\cdot49+7^x\cdot\dfrac{2}{7}=345\)

\(\Leftrightarrow7^x=7\)

hay x=1

c: \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)

\(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\left(-\dfrac{1}{6}\right)^2\)

=>x-1=2

hay x=3

d: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)

\(\Leftrightarrow5^x=5^2\cdot5^3=5^5\)

hay x=5

11 tháng 12 2017

\(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{\dfrac{8}{2}-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)

18 tháng 7 2017

nếu là -343 thì còn được.
2x-1 là số lẻ, lũy thừa số hữu tỉ âm với mũ lẻ kết quả là số hữu tỉ âm. làm sao ra được số 343 mà giải.!
Thân chào!

8 tháng 1 2018

\(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{9}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)

\(A=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{\left(7.7\right)^2}}{\dfrac{8}{2}-\dfrac{4}{9}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(A=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{2401}}{\dfrac{8}{2}-\dfrac{4}{9}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(A=\dfrac{\dfrac{6}{7}+\dfrac{1}{49}-\dfrac{1}{2401}}{\dfrac{32}{9}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(A=\dfrac{\dfrac{43}{49}-\dfrac{1}{2401}}{\dfrac{1604}{441}-\dfrac{4}{343}}\)

\(A=\dfrac{\dfrac{2106}{2401}}{3,625526401}\)

\(A=\dfrac{2106}{2401}:3,625526401\)

\(A=\dfrac{9477}{39172}\)

10 tháng 10 2018

a, \(125^3:5^7=\left(5^3\right)^3:5^7=5^9:5^7=5^2\)

b, \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{4}{49}\right)^5:\left(\dfrac{8}{343}\right)^2\)

= \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2^2}{7^2}\right)^5:\left(\dfrac{2^3}{7^3}\right)^2\)

= \(\left(\dfrac{2}{7}\right)^{18}:\left[\left(\dfrac{2}{7}\right)^2\right]^5:\left[\left(\dfrac{2}{7}\right)^3\right]^2\)

=\(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2}{7}\right)^{10}:\left(\dfrac{2}{7}\right)^6\)

= \(\left(\dfrac{2}{7}\right)^{18-10-6}=\left(\dfrac{2}{7}\right)^2\)

c, \(3-\left(\dfrac{-7}{9}\right)^0+\left(\dfrac{1}{3}\right)^5.3^5\)

= 3 - 1 +\(\left[\left(\dfrac{1}{3}\right)^5.3^5\right]\)

= 2 + 1=3

d, \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(9.5\right)^{10}.5^{20}}{\left(25.3\right)^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}\)

= \(\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5\)

11 tháng 2 2018

\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)

\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)

\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)

\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)

\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)

\(B=\frac{300}{343}:\frac{1347}{343}\)

\(B=\frac{100}{449}\)

11 tháng 2 2018

\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)

\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)

\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)

\(A=\frac{-1}{2}+\frac{1710}{9}\)

\(A=\frac{-1}{2}+190\)

\(A=\frac{-1}{2}+\frac{380}{2}\)

\(A=\frac{379}{2}\)

28 tháng 1 2019

\(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\\ =\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\cdot\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)

 \(A=\dfrac{\dfrac{7}{7}-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)

 

11 tháng 2 2018

\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(=\dfrac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\dfrac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.\left(2.7\right)^3}\)

\(=\dfrac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

= \(\dfrac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\dfrac{5^{10}.7^3\left(1-7\right)}{5^9.7^3\left(1+2^3\right)}\)

= \(\dfrac{2}{3.4}-\dfrac{5\left(-6\right)}{9}\)

= \(\dfrac{7}{2}\)