\(\dfrac{1}{3}\)-\(\dfrac{1}{12}\)-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=-8\cdot\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)

\(=-8\cdot\dfrac{1}{2}:\dfrac{27-14}{12}\)

\(=-4\cdot\dfrac{12}{13}=\dfrac{-48}{13}\)

b: \(=\left(\dfrac{10}{3}+\dfrac{5}{2}\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{11}{31}\)

\(=\dfrac{35}{6}:\dfrac{-31}{30}-\dfrac{11}{31}\)

\(=\dfrac{-35}{6}\cdot\dfrac{30}{31}-\dfrac{11}{31}=-6\)

15 tháng 4 2018

a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)

ĐK:\(x\ne0\)

\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)

15 tháng 4 2018

\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)

20 tháng 5 2017

\(5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{11}{5^{11}}.\)

\(4A=5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}=B-\dfrac{11}{5^{12}}.\)

\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{10}}.\)

\(4B=5B-B=1-\dfrac{1}{5^{11}}\)

\(\Rightarrow4A=\dfrac{1}{4}\left(1-\dfrac{1}{5^{11}}\right)-\dfrac{1}{5^{12}}< \dfrac{1}{4}\Rightarrow A< \dfrac{1}{16}\)

16 tháng 4 2018

Đặt A = \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)

2A = \(2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)

2A = \(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)

2A + A = \(\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)

3A = \(1-\dfrac{1}{64}\)

3A = \(\dfrac{63}{64}\) < 1

hay 3A < 1

=> A < \(\dfrac{1}{3}\)

Vậy .................. (tự kết luận)

\(\Leftrightarrow-\dfrac{93}{23}:\left(\dfrac{13}{4}-x\cdot\dfrac{5}{3}\right)=1-\dfrac{99}{46}=-\dfrac{53}{46}\)

\(\Leftrightarrow\dfrac{13}{4}-\dfrac{5}{3}x=-\dfrac{99}{23}:-\dfrac{53}{46}=\dfrac{198}{53}\)

=>5/3x=-103/212

hay x=-309/1060

1 tháng 5 2018

các bạn giúp mình đang cần gấp

\(\Leftrightarrow\left(\dfrac{2}{3}+\dfrac{x}{5}\right)\cdot30=80\)

=>1/5x+2/3=8/3

=>1/5x=2

hay x=10

15 tháng 11 2017

\(A=\dfrac{1}{2}+\dfrac{3-2}{3.2}+\dfrac{4-3}{3.4}+...+\dfrac{100-99}{100.99}\)

\(A=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=1-\dfrac{1}{100}\)

\(A=\dfrac{99}{100}\)

15 tháng 11 2017

\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+....+\dfrac{2}{2007.2009}+\dfrac{2}{2009..2011}\)

\(2B=\dfrac{3-1}{1.3}+\dfrac{5-3}{3,5}+...+\dfrac{2009-2007}{2009.2007}+\dfrac{2011-2009}{2011.2009}\)

\(2B=\dfrac{3}{3}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2011}\)

\(2B=1-\dfrac{1}{2011}\)

\(2B=\dfrac{2010}{2011}\)

\(B=\dfrac{2010}{4022}\)