Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, A = x^2 + 6x + 2018
= x^2 + 2.x.3 + 3^2 - 3^2 + 2018
= (x + 3)^2 -3^2 + 2018
= (x + 3)^2 + 2009
=>. GTNN of A là 2009
Mình cũng không chắc nữa, nếu đúng thì các ý khác bạn tham khảo nhé
\(A=x^2+6x+2018\)
\(A=\left(x^2+6x+9\right)+2009\)
\(A=\left(x+3\right)^2+2009\)
Mà \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2009\)
Dấu "=" xảy ra khi : \(x+3=0\Leftrightarrow x=-3\)
Vậy ...
\(B=x^2-5x+20\)
\(B=\left(x^2-5x+\frac{25}{4}\right)+\frac{55}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2+\frac{55}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{55}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy ...
\(C=x^2+5x+10\)
\(C=\left(x^2+5x+\frac{25}{4}\right)+\frac{15}{4}\)
\(C=\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow C\ge\frac{15}{4}\)
Dấu "=" xảy ra khi : \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy ...
\(D=x^2+10x-30\)
\(D=\left(x^2+10x+25\right)-55\)
\(D=\left(x+5\right)^2-55\)
Mà \(\left(x+5\right)^2\ge0\forall x\)
\(\Rightarrow D\ge-55\)
Dấu "=" xảy ra khi : \(x+5=0\Leftrightarrow x=-5\)
Vậy ...
Giải:
a) Để đa thức có nghiệm
\(\Leftrightarrow x^2-64=0\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x=\pm8\)
Vậy ...
d) Để đa thức có nghiệm
\(\Leftrightarrow x^2-81=0\)
\(\Leftrightarrow x^2=81\)
\(\Leftrightarrow x=\pm9\)
Vậy ...
h) Để đa thức có nghiệm
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow\left(x-6\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy ...
Các câu còn lại làm tương tự.
a, x\(^2\) - 64 = 0
\(\Rightarrow\) x\(^2\) = 0 + 64
= 64
= 8\(^2\)
\(\Rightarrow\) x = 8
Vậy nghiệm của \(x^2-64\) là 8
d, \(x^2-81\) = 0
\(\Rightarrow\) x\(^2\) = 81
= 9\(^2\)
\(\Rightarrow\) x = 9
vậy nghiệm của \(x^2-81\) là 9
\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)
Hệ số 3/5
\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)
Hệ số 4
Làm nốt b Quỳnh đag lm dở.
Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)
\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)
\(P\left(x\right)=x^2-2\)
Ta có : \(P\left(x\right)=x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
a) \(2^3:\left|x-2\right|=2\)
\(\Leftrightarrow8:\left|x-2\right|=2\)
\(\Leftrightarrow\left|x-2\right|=8:2\)
\(\Leftrightarrow\left|x-2\right|=4\)
Xét trường hợp 1: \(x-2=4\)
\(\Rightarrow x=4+2\)
\(\Rightarrow x=6\)
Xét trường hợp 2: \(x-2=-4\)
\(\Rightarrow x=-4+2\)
\(\Rightarrow x=-\left(4-2\right)\)
\(\Rightarrow x=-2\)
Vậy \(x=6\) hoặc \(x=-2\)
b)