\(a)x^3-6x^2+12x-8=0\\ b)8x^3-12x^2+6x-1=0\\ c)x^3+9x^2+27x+27=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

8 tháng 8 2016

d) <=>x2-5x-x+5=0

<=>x(x-5)-(x-5)=0

<=>(x-5)(x-1)=0

<=>x=5 hoặc x=1

9 tháng 8 2016

thank nha

6 tháng 9 2016

a.\(x^3-6x^2+12x-8=0\Rightarrow\)\(\left(x-2\right)^3=0\Rightarrow x=2\)

b.\(x^3+9x^2+27x+27=0\Rightarrow\left(x+3\right)^3=0\)\(\Rightarrow x=-3\)

29 tháng 7 2017

c. \(8x^3-12x^2+6x-1=0\)

\(\Rightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow x=\frac{1}{2}\)

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3

18 tháng 8 2021

1) <=> x2 - 4x - x2 + 8 = 0 <=> x2 - 4x + 8 =  0 

Dễ thấy phương trình vô nghiệm vì x2 - 4x + 8 = ( x - 2 )2 + 4 > 0

2) <=> ( x - 1 )3 = 0 <=> x = 1

3) <=> ( x - 2 )3 = 0 <=> x = 2

4) <=> ( 2x - 1 )3 = 0 <=> x = 1/2

7 tháng 9 2016

a ) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow x^3-3.x^2.2+3.x.2^2-2^3=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow\left(x-2\right)=0\)

\(\Leftrightarrow x=2\)

b ) \(x^3+9x^2+27x+27=0\)

\(\Leftrightarrow x^3+3.x^2.3+3.x.3^2+3^3=0\)

\(\Leftrightarrow\left(x-3\right)^3=0\)

\(\Leftrightarrow\left(x-3\right)=0\)

\(\Leftrightarrow x=3\)

 

7 tháng 9 2016

a) x3 - 6x2 + 12x - 8 = 0

   ( x - 2 ) 3                = 0

    x - 2                      = 0

    x                           = 2

b) x3 + 9x2 + 27x + 27 = 0

    ( x + 3 )3                    = 0

      x + 3                         = 0

      x                                = -3

9 tháng 8 2017

a) \(x^3-9x^2+27x-27=-8\Leftrightarrow\left(x-3\right)^3=\left(-2\right)^3\)

\(\Rightarrow x-3=-2\Leftrightarrow x=1\) vậy \(x=1\)

b) \(64x^3+48x^2+12x+1=0\Leftrightarrow\left(4x+1\right)^3=3^3\)

\(\Rightarrow4x+1=3\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{2}{4}=\dfrac{1}{2}\) vậy \(x=\dfrac{1}{2}\)

c) \(x^3-3x^2+3x-1=0\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\) vậy \(x=1\)

d) \(x^3+6x^2+12x+8=0\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\) vậy \(x=-2\)

e) \(x^3-6x^2+12x-8=0\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\) vậy \(x=2\)

16 tháng 10 2020

Bài 1: Tìm x

a) Ta có: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\)

\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-9=0\)

\(\Leftrightarrow-12x-24=0\)

\(\Leftrightarrow-12x=24\)

hay x=-2

Vậy: x=-2

b) Ta có: \(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)

\(\Leftrightarrow9x^2-6x+1+2\left(x^2+6x+9\right)-11\left(x-1\right)\left(x+1\right)-6=0\)

\(\Leftrightarrow9x^2-6x+1+2x^2+12x+18-11\left(x^2-1\right)-6=0\)

\(\Leftrightarrow11x^2+6x+12-11x^2+11=0\)

\(\Leftrightarrow6x+23=0\)

\(\Leftrightarrow6x=-23\)

hay \(x=-\frac{23}{6}\)

Vậy: \(x=-\frac{23}{6}\)

c) Ta có: \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

hay \(x=\frac{1}{2}\)

Vậy: \(x=\frac{1}{2}\)

d) Ta có: \(x^3+9x^2+27x+27=0\)

\(\Leftrightarrow x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Leftrightarrow x+3=0\)

hay x=-3

Vậy: x=-3

16 tháng 10 2020

a) (2x + 1)2 - 4(x + 2)2 = 9

4x2 + 4x + 1 - 4(x2 + 4x + 4) = 9

4x2 + 4x + 1 - 4x2 - 16x - 16 = 9

-12x - 15 = 9

-12x = 9 + 15

-12x = 24

x = 12 : (-2)

x = -2

b) (3x - 1)2 + 2(x + 3)2 + 11(x + 1)(1 - x) = 6

9x2 - 6x + 1 + 2(x2 + 6x + 9) - 11(x + 1)(x - 1) = 6

9x2 - 6x + 1 + 2x2 + 12x + 18 - 11(x2 - 1) = 6

9x2 - 6x + 1 + 2x2 + 12x + 18 - 11x2 + 11 = 6

6x + 30 = 6

6x = 6 - 30

6x = -24

x = -24 : 6

x = -4

c) 8x3 - 12x2 + 6x - 1 = 0

(2x)3 - 3.(2x)2.1 + 3.2x.12 - 13 = 0

(2x - 1)3 = 0

2x - 1 = 0

2x = 1

x = 1/2

d) x3 + 9x2 + 27x + 27 = 0

x3 + 3.x2.3 + 3.x.32 + 33 = 0

(x + 3)3 = 0

x + 3 = 0

x = 0 - 3

x = -3