\(\left||x+5\right|-4|=3\)

b.8x-\(\left...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>|5x+4|=19

=>5x+4=19 hoặc 5x+4=-19

=>5x=15 hoặc 5x=-23

=>x=3 hoặc x=-23/5

b: =>3|2x-9|=33

=>|2x-9|=11

=>2x-9=11 hoặc 2x-9=-11

=>2x=20 hoặc 2x=-2

=>x=10 hoặc x=-1

d: =>|17x-5|=|17x+5|

=>17x-5=17x+5 hoặc 17x-5=-17x-5

=>34x=0

hay x=0

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

15 tháng 6 2017

Nhầm sorry mk tưởng cộng sory bạn nha Thái Viết Nam

15 tháng 6 2017

Ta có : |17x - 5| - |17x + 5| = 0 

Mà |17x - 5| \(\ge\)0 ; |17x + 5| \(\ge\) 0

Nên \(\hept{\begin{cases}\left|17x-5\right|=0\\\left|17x+5\right|=0\end{cases}}\)

 <=>\(\hept{\begin{cases}17x-5=0\\17x+5=0\end{cases}}\)

  <=>  \(\hept{\begin{cases}17x=5\\17x=-5\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{5}{17}\\x=-\frac{5}{17}\end{cases}}\)

Mà x ko thể đồng thời bằng 2 giá trị 

Nên x thuộc rỗng 

a) \(\left(x-1\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\Rightarrow x=1\\2x-4=0\Rightarrow x=2\end{matrix}\right.\)

b) \(\left(x^2+5\right)\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5=0\Rightarrow x=-\sqrt{5}\\x-5=0\Rightarrow x=5\end{matrix}\right.\)

\(x\in Z\Rightarrow x=5\)

c) \(\left(x^2+5\right)\left(x^2-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5=0\Rightarrow x=-\sqrt{5}\\x^2-2=0\Rightarrow x=\sqrt{2}\end{matrix}\right.\)

\(x\in Z\Rightarrow x\in\varnothing\)

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

1: Ta có: |2x-3|=|x+5|

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x+5\\2x-3=-x-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-3-x-5=0\\2x-3+x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{8;\frac{-2}{3}\right\}\)

2: Ta có: |4-2x|=|3x|

\(\Leftrightarrow\left[{}\begin{matrix}4-2x=3x\\4-2x=-3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4-2x-3x=0\\4-2x+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x+4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x=-4\\x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=-4\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{4}{5};-4\right\}\)

3: Ta có: |4x-5|-|2x+1|=0

\(\Leftrightarrow\left|4x-5\right|=\left|2x+1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-5=2x+1\\4x-5=-2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x-5-2x-1=0\\4x-5+2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\6x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{3;\frac{2}{3}\right\}\)

4: Ta có: \(\left|0.5x-2\right|-\left|x+\frac{2}{3}\right|=0\)

\(\Leftrightarrow\left|0.5x-2\right|=\left|x+\frac{2}{3}\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-2=x+\frac{2}{3}\\\frac{1}{2}x-2=-x-\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-2-x-\frac{2}{3}=0\\\frac{1}{2}x-2+x+\frac{2}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{-1}{2}x-\frac{8}{3}=0\\\frac{3}{2}x-\frac{4}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{-1}{2}x=\frac{8}{3}\\\frac{3}{2}x=\frac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}:\frac{-1}{2}=\frac{8}{3}\cdot\left(-2\right)=\frac{-16}{3}\\x=\frac{4}{3}:\frac{3}{2}=\frac{4}{3}\cdot\frac{2}{3}=\frac{8}{9}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{-16}{3};\frac{8}{9}\right\}\)