Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(x-3\right)^5=32\)
⇒ \(\left(x-3\right)^5=2^5\)
⇒ \(x-3=2\)
⇒ \(x=2+3\)
⇒ \(x=5\)
Vậy \(x=5.\)
b) \(\left(x^3\right)^{12}=x\)
⇒ \(x^{36}=x\)
⇒ \(x^{36}-x=0\)
⇒ \(x.\left(x^{35}-1\right)=0\)
⇒ \(\left[{}\begin{matrix}x=0\\x^{35}-1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=0\\x^{35}=0+1\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=0\\x^{35}=1\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{0;1\right\}.\)
Chúc bạn học tốt!
a, \(\dfrac{20}{x}=\dfrac{-12}{15}\Rightarrow x=\dfrac{20.15}{-12}\Rightarrow x=-25\)
\(b,\dfrac{-15}{35}=\dfrac{27}{x}\Rightarrow x=\dfrac{35.27}{-15}\Rightarrow x=-63\)
\(c,\dfrac{\dfrac{4}{5}}{1\dfrac{2}{5}}=\dfrac{2\dfrac{2}{5}}{x}\Rightarrow x=\dfrac{2\dfrac{2}{5}.1\dfrac{2}{5}}{\dfrac{4}{5}}\Rightarrow x=\dfrac{\dfrac{84}{25}}{\dfrac{4}{5}}\Rightarrow x=\dfrac{21}{5}\)
\(d,\dfrac{x}{1\dfrac{1}{4}}=\dfrac{1\dfrac{1}{5}}{2}\Rightarrow x=\dfrac{1\dfrac{1}{4}.1\dfrac{1}{5}}{2}\Rightarrow x=\dfrac{\dfrac{3}{2}}{2}\Rightarrow x=\dfrac{3}{4}\)
\(e,\dfrac{\dfrac{1}{2}}{1\dfrac{1}{4}}=\dfrac{x}{3\dfrac{1}{3}}\Rightarrow x=\dfrac{\dfrac{1}{2}.3\dfrac{1}{3}}{1\dfrac{1}{4}}\Rightarrow x=\dfrac{\dfrac{5}{3}}{\dfrac{5}{4}}\Rightarrow x=\dfrac{4}{3}\)
a.
\(\frac{2}{-7}< 0\)
\(0< 0,25\)
\(\Rightarrow\frac{2}{-7}< 0,25\)
\(\Rightarrow y< x\)
b.
\(-\frac{3}{101}< 0\)
\(0< \frac{1}{97}\)
\(\Rightarrow\frac{-3}{101}< \frac{1}{97}\)
\(\Rightarrow x< y\)
c.
\(\frac{4}{-3}< 0\)
\(0< \frac{-1}{-103}\)
\(\Rightarrow\frac{4}{-3}< \frac{-1}{-103}\)
\(\Rightarrow x< y\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (1)
\(\frac{3a^2+2b^2}{3c^2+2d^2}=\frac{3.\left(bk\right)^2+2b^2}{3\left(dk\right)^2+2d^2}=\frac{3.b^2.k^2+2b^2}{3.d^2.k^2+2d^2}=\frac{b^2\left(3k^2+2\right)}{d^2\left(3.k^2+2\right)}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
Mk có sửa đề chút nhé!
c) \(4^{x+2}+4^{x+1}=320\)
\(\Rightarrow4^x.4^2+4^x.4=320\)
\(\Rightarrow4^x.\left(4^2+4\right)=320\)
\(\Rightarrow4^x.20=320\)
\(\Rightarrow4^x=320:20\)
\(\Rightarrow4^x=16\)
\(\Rightarrow4^x=4^2\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Chúc bạn học tốt!