Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
\(\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}-\dfrac{-5}{48}\)
\(\dfrac{-1}{12}< x< \dfrac{1}{8}\) hay \(-0,08333...< x< 0,125\)
Vì \(x\in Z\Rightarrow x\in\left\{0\right\}\)
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
a: \(\Leftrightarrow7^x\cdot49+7^x\cdot\dfrac{2}{7}=345\)
\(\Leftrightarrow7^x=7\)
hay x=1
c: \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)
\(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\left(-\dfrac{1}{6}\right)^2\)
=>x-1=2
hay x=3
d: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)
\(\Leftrightarrow5^x=5^2\cdot5^3=5^5\)
hay x=5
a. \(\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{13}\right)\)
\(\Rightarrow\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{-113}{364}\right)=\dfrac{113}{364}\)
\(\Rightarrow\left(\dfrac{5}{42}-x\right)=\dfrac{11}{13}-\dfrac{113}{364}\)
\(\Rightarrow\left(\dfrac{5}{42}-x\right)=\dfrac{15}{28}\)
\(\Rightarrow x=\dfrac{5}{42}-\dfrac{15}{28}=\dfrac{-5}{12}\)
Vậy..............
b. \(2x.\left(x-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{7}\end{matrix}\right.\)
Vậy............
c. \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{1}{4}:\dfrac{-7}{20}=\dfrac{-5}{7}\)
Vậy...........
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
\(1,\)
\(a,\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)
\(=\dfrac{11}{125}+\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)\)
\(=\dfrac{11}{125}+\left(\dfrac{-1}{2}\right)+\dfrac{1}{2}\)
\(=\dfrac{11}{125}\)
\(b,-1\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=\dfrac{-12}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=-15.\left[\dfrac{12}{7}+\dfrac{2}{7}+\left(-5\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\right]\)
\(=-15.\left[2+\left(-5\right).\dfrac{1}{105}\right]\)
\(=-15.\left(2-\dfrac{1}{21}\right)\)
\(=-15.\dfrac{41}{21}=\dfrac{-615}{21}\)
\(2,\)
\(a,\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{13}\right)\)
\(\Leftrightarrow\dfrac{11}{13}-\dfrac{5}{42}+x=\dfrac{-15}{28}+\dfrac{11}{13}\)
\(\Leftrightarrow x=\dfrac{-15}{28}+\dfrac{11}{13}-\dfrac{11}{13}+\dfrac{5}{42}\)
\(\Leftrightarrow x=\left(\dfrac{11}{13}-\dfrac{11}{13}\right)+\left(\dfrac{5}{42}+\dfrac{-15}{28}\right)\)
\(\Leftrightarrow x=\dfrac{5}{12}\)
Vậy \(x=\dfrac{5}{12}\)
\(b,\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|-3,75=-2,15\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6=\dfrac{16}{10}=\dfrac{8}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=\dfrac{8}{5}\\x+\dfrac{4}{15}=\dfrac{-8}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{5}-\dfrac{4}{15}=\dfrac{4}{3}\\x=\dfrac{-8}{5}-\dfrac{4}{15}=\dfrac{-28}{15}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{4}{3};\dfrac{-28}{15}\right\}\)
\(c,7^{x+2}+2.7^{x-1}=345\)
\(\Leftrightarrow7^{x-1}.\left(7^3+2\right)=345\)
\(\Leftrightarrow7^{x-1}.\left(343+2\right)=345\)
\(\Leftrightarrow7^{x-1}.345=345\)
\(\Leftrightarrow7^{x-1}=345:345=1\)
\(\Leftrightarrow x-1=0\)
\(x=0+1=1\)
Vậy \(x=1\)
a,
\(\left(\dfrac{3}{5}x-\dfrac{2}{3}x-x\right)\cdot\dfrac{1}{7}=-\dfrac{5}{21}\)
\(\Rightarrow\dfrac{-16}{15}x\cdot\dfrac{1}{7}=-\dfrac{5}{21}\)
\(\Rightarrow\dfrac{-16}{15}x=\dfrac{-\dfrac{5}{21}}{\dfrac{1}{7}}=-\dfrac{5}{3}\)
\(\Rightarrow x=\dfrac{-\dfrac{5}{3}}{-\dfrac{16}{15}}=\dfrac{25}{16}\)
b,
\(\left(5x-1\right)\left(2x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\2x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{6}\end{matrix}\right.\)
c,
\(\dfrac{5\left|x+1\right|}{2}=\dfrac{90}{\left|x+1\right|}\)
\(\Rightarrow5\left|x+1\right|^2=180\)
\(\Rightarrow\left|x+1\right|^2=36\)
Mà \(\left|x+1\right|\ge0\)
=> x + 1 = 6 <=> x = 7
Ta có:
\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow A=\dfrac{1}{3.7}+\dfrac{1}{4.7}+\dfrac{1}{4.9}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow A=\dfrac{1.2}{2.3.7}+\dfrac{1.2}{2.4.7}+\dfrac{1.2}{2.4.9}+...+\dfrac{1.2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow A=2\left(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow A=2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow A=2\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Leftrightarrow x+1=18\)
\(\Leftrightarrow x=17\)
Vậy \(x=17\)