Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h: \(a^2-2a^2b+ab^2\)
\(=a\left(a-2ab+b^2\right)\)
i: \(5ax^4+10ax^3y+5ax^2y^2\)
\(=5ax^2\left(x^2+2xy+y^2\right)\)
\(=5ax^2\left(x+y\right)^2\)
j: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
k1: \(2xy-x^2-y^2+9\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=9-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
k2: \(x^3+2x^2y+xy^2-16x\)
\(=x\left(x^2+2xy+y^2-16\right)\)
\(=x\left(x+y+4\right)\left(x+y-4\right)\)
l: \(=a^2\left(a-1\right)-\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2-1\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)\)
a/\(7x^2+8x-15=0\Leftrightarrow\left(x-1\right)\left(7x+15\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-15}{7}\end{cases}}\)
b/\(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)\(\Leftrightarrow4x^2-25-4x^2-4x+35=0\)
\(\Leftrightarrow-4x+10=0\Leftrightarrow x=\frac{5}{2}\)
a) 7x2 + 8x - 15 = 0
giải phương trình trên máy tính ta có :
x = 1 hoặc x = \(-\frac{15}{7}\)
b) Viết thiếu đề nhưng tôi cứ cho nó = 0 nếu là kết quả khác thì tham khảo
4x2 - 25 - ( 2x - 5 ) (2x + 7 ) = 0
=> 4x2 - 25 - 4x2 - 4x + 35 = 0
=> -4x + 10 = 0
=> - 4x = - 10
=> x = \(\frac{5}{2}\)
Study well
1
a) x^2+2x-5 b) x^2+x+7 9 (dư 8)
2
x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;
3
a=2
a) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)
c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)
d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)
a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x\right)^2-5^2-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(-2\right).\left(2x-5\right)=0\)
\(\Leftrightarrow2x-5=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
a,\(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(4x^2-25\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)^2-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x-5-2x-7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(-12\right)=0\)
\(\Rightarrow2x-5=0\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\dfrac{5}{2}\)
\(b,2x^3+3x^2+2x+3=0\)
\(\Rightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Rightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Rightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=0\\x^2+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-3\\x^2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
\(c,x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)^3+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right).x^3=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x^3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\end{matrix}\right.\)
\(d,x^2\left(x+7\right)-4\left(x+7\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=4\\x=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
ừm?
\(a^2x+5ax+25=a^2\)
\(\Leftrightarrow\left(a^2x+5ax\right)+\left(25-a^2\right)=0\)
\(\Leftrightarrow ax\left(a+5\right)+\left(5+a\right)\left(5-a\right)=0\)
\(\Leftrightarrow\)ax(a + 5) = (a + 5)(a - 5)
Với a = 0 thì:
\(\Rightarrow\)0x = - 25
\(\Rightarrow\) Phương trình vô nghiệm.
Với a + 5 = 0 \(\Leftrightarrow a=-5\)
\(\Rightarrow0x=0\)
\(\Rightarrow\)Phương trình có vô số nghiệm x \(\in\)R
Với \(\left\{{}\begin{matrix}a\ne0\\a\ne-5\end{matrix}\right.\)thì
\(\Rightarrow x=\dfrac{\left(a+5\right)\left(a-5\right)}{a\left(a+5\right)}=\dfrac{a-5}{a}\)