Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có tổng <0 nên 1 trong 2 số phải có 1 số âm , số còn lại là duong . Mà x-1<x+3 nên x-1 âm và x+3 dưong . Vậy x-1<0 nên x<1;x+3>0nen x>-3.vAY X<1 HOAC X>-3
bạn muốn mình làm cách bth hay lập bảng xét dấu các nhị thức
a: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
b: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
c: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
=>x-3/x-9<0
=>3<x<9
c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)
⇒ \(\dfrac{5}{x}\) - 1 < 0 ⇒ \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)
Lập bảng ta có:
\(x\) | 0 5 |
\(x-5\) | + | + 0 - |
\(x\) | - 0 + | + |
\(\dfrac{x-5}{x}\) | - || + 0 - |
Theo bảng trên ta có \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)
Vậy tập hợp nghiệm của bất phương trình đã cho là:
S = (- ∞; 0) \(\cup\) (5 ; + ∞)
Bài này đáng lớp 6 thôi
a, ( x - 1 ) . ( x - 4 ) > = 0
Th1 : ( x - 1 ) . ( x - 4 ) > 0
=> x - 1 và x - 4 cùng dấu
( + ) x - 1 > 0 ( + ) x - 4 > 0
x > 1 x > 4
=> x > 4
( + ) x - 1 < 0 ( + ) x - 4 < 0
x < 1 x < 4
=> x < 1
Vậy x > 4 hoặc x < 1 thì ( x - 1 ) ( x - 4 ) > = 0
Phần b tương tự
\(a.\orbr{\begin{cases}\hept{\begin{cases}x-1\ge0\\x-4\ge0\end{cases}}\\\hept{\begin{cases}x-1\le0\\x-4\le0\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x\ge1\\x\ge4\end{cases}}\\\hept{\begin{cases}x\le1\\x\le4\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}x\ge4\\x\le1\end{cases}}}\)
\(\frac{x}{5}=\frac{y}{3}\Rightarrow x=\frac{5y}{3}\)
Thay \(\frac{x}{5}=\frac{y}{3}\Rightarrow x=\frac{5y}{3}\)
vào x2-y2=4\(\Rightarrow\)\(\left(\frac{5y}{3}\right)^2-y^2=4\)
\(\Leftrightarrow\frac{25y^2}{9}-y^2=4\)
\(\Leftrightarrow25y^2-9y^2=4\)
\(\Leftrightarrow16y^2=4\)
\(\Leftrightarrow y^2=\frac{1}{4}\)
\(\Leftrightarrow y=\frac{1}{2}\)
\(\Rightarrow x=\frac{5\cdot\frac{1}{2}}{3}\)
\(\Leftrightarrow x=\frac{5}{6}\)
Ta có\(\frac{x}{5}=\frac{y}{3}\)
Suy ra \(\left(\frac{x}{5}\right)^2\)\(=\left(\frac{y}{3}\right)^2\)
Suy ra \(\frac{x^2}{25}=\frac{y^2}{9}\)
Suy ra \(\frac{x^2-y^2}{25-9}\)
MÀ \(x^2-y^2=4\)
Suy ra\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{4}{16}=\frac{1}{4}\)
Còn lại tự tính k nha
a) \(3\left(2x-1\right)+1=\left(-2\right)^2-3\left(-2\right)^3\)
\(\Leftrightarrow6x-3+1=4+24\)
\(\Leftrightarrow6x=4+24-1+3\)
\(\Leftrightarrow6x=30\)
\(\Leftrightarrow x=5\)
b) \(\left(x-2\right)\left(x+3\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2>0\\x+3>0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>2\\x>-3\end{cases}}\)
c) \(x^2\left(x+2\right)-9\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-9=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\pm3\\x=-2\end{cases}}\)
ê bạn Hảo , mình trả lời cho ấy rồi nếu cho đúng thì cho mình 1 đúng đi
a) \(x^2-9>0\)
\(\Leftrightarrow x^2>9\)
\(\Leftrightarrow x>\pm3\)
b) \(4-x^2>0\)
\(\Leftrightarrow-x^2>-4\)
\(\Leftrightarrow x< \pm2\)