Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b: \(\dfrac{72-x}{7}=\dfrac{x-70}{9}\)
=>648-9x=7x-490
=>-16x=-1138
hay x=569/8
c: \(\Leftrightarrow x^2=\dfrac{36}{25}\)
hay \(x\in\left\{\dfrac{6}{5};-\dfrac{6}{5}\right\}\)
d: Đặt x/5=y/4=k
=>x=5k; y=4k
Ta có: xy=180
\(\Leftrightarrow20k^2=180\)
\(\Leftrightarrow k^2=9\)
Trường hợp 1: k=3
=>x=15; y=12
Trường hợp 2: k=-3
=>x=-15; y=-12
a)(2x-3)2=1<=> \(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}< =>\orbr{\begin{cases}2x=4\\2x=2\end{cases}}}\)\(< =>\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
x=2 =>22.52=20y.5y <=>100 = 100y <=> y=1
x=1 => 2.5= 20y.5y <=>10=100y <=>y = 1/2
b)(4x-3)2+(y2-9)2\(\ge0\)
dấu = sảy ra khi \(\hept{\begin{cases}4x-3=0\\y^2-9=0\end{cases}< =>\hept{\begin{cases}4x=3\\y^2=9\end{cases}}}\)\(\hept{\begin{cases}x=\frac{3}{4}\\y=\pm3\end{cases}}\)
c) <=> (y-5)8 \(\le-\left(x+4\right)^7\) (1)
(y-5)8 >=0 với mọi y nên -(x+4)7 \(\ge\left(y-5\right)^8\ge0\)<=> (x+4)7\(\le0< =>x+4\le0< =>x\le-4\)
Khi đó (1) <=> y-5\(\le\sqrt[8]{-\left(x+4\right)^7}\) <=> y\(\hept{\begin{cases}y\le5-\sqrt[8]{-\left(x+4\right)^7}\\x\le-4\end{cases}}\)
a) \(3\left(2x-1\right)+1=\left(-2\right)^2-3\left(-2\right)^3\)
\(\Leftrightarrow6x-3+1=4+24\)
\(\Leftrightarrow6x=4+24-1+3\)
\(\Leftrightarrow6x=30\)
\(\Leftrightarrow x=5\)
b) \(\left(x-2\right)\left(x+3\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2>0\\x+3>0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>2\\x>-3\end{cases}}\)
c) \(x^2\left(x+2\right)-9\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-9=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\pm3\\x=-2\end{cases}}\)
a/ \(x^2=5\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
vậy .....
b/ \(x^2-9=0\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=3^2\\x^2=\left(-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy .......( nhầm cái ngoặc)
c/ \(x^2+1=0\)
\(\Leftrightarrow x^2=-1\)
Mà \(x^2\ge0\Leftrightarrow x\in\varnothing\)
Vậy ....
d/ \(\left(x-1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=3^2\\\left(x-1\right)^2=\left(-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy ...
e/ \(\left(2x+3\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x+3\right)^2=5^2\\\left(2x+3\right)^2=\left(-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy .....
f/ Ta có :
\(x^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1^2\\x^2=\left(-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
\(x^2=5\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
\(\left(x-1\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
\(x^2-9=0\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(\left(2x+3\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varnothing\)
\(x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Dễ dàng suy ra góc B = 60 độ (đl tổng 3 góc trong 1 tam giác)
=> \(\widehat{A}>\widehat{B}>\widehat{C}\)
=> \(BC>AC>AB\) (cạnh đối diện)
Tớ gợi ý cho cậu mẹo tìm cạnh đối diện nè:
VD: tam giác ABC có góc A > góc C, cậu sẽ lấy hai chữ còn lại của chữ (góc đó) => BC > AB
Vậy cạnh BC lớn nhất!
a: =>x^2=1,44
=>x=1,2 hoặc x=-1,2
b: =>648-9x=7x-490
=>-16x=-1138
=>x=569/8
c: =>x^2-1=0 và x-y+3=0
=>x^2=1 và x-y=-3
=>(x,y)=(1;4) hoặc (x,y)=(-1;2)