![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) a) \(x^2=2x\Leftrightarrow x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) vậy \(x=0;x=2\)
b) \(x^3=x\Leftrightarrow x^3-x=0\Leftrightarrow x\left(x^2-1\right)=0\) \(\Leftrightarrow x\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+1=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\) vậy \(x=0;x=-1;x=1\)
\(x^2=2x\Rightarrow x^2-2x=0\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\end{matrix}\right.\)
\(x^3=x\Rightarrow x^3-x=0\Rightarrow x\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\end{matrix}\right.\)
\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)\left(\dfrac{1}{25}-1\right)...\left(\dfrac{1}{121}-1\right)\)
\(A=\dfrac{-3}{4}.\dfrac{-8}{9}.\dfrac{-15}{16}.\dfrac{-24}{25}...\dfrac{-120}{121}\)
\(A=\dfrac{3.8.15.24....120}{4.9.16.25...121}\)
\(A=\dfrac{1.3.2.4.3.5.4.6....10.12}{2.2.3.3.4.4.5.5....11.11}\)
\(A=\dfrac{1.2.4....10}{2.3.4.5...11}.\dfrac{3.4.5....12}{2.3.4.5....11}\)
\(A=\dfrac{1}{11}.6=\dfrac{6}{11}\)
3) Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{8^{2017}+1}{8^{2018}+1}< 1\)
\(B< \dfrac{8^{2017}+1+8}{8^{2018}+1+8}\)
\(B< \dfrac{8^{2017}+8}{8^{2018}+8}\)
\(B< \dfrac{8\left(8^{2016}+1\right)}{8\left(8^{2017}+1\right)}\)
\(B< \dfrac{8^{2016}+1}{8^{2017}+1}=A\)
\(B< A\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{3}{4}:\sqrt{\dfrac{49}{64}}\)
\(\Leftrightarrow\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{6}{7}\)
\(\Leftrightarrow\dfrac{2}{7}x=\dfrac{19}{14}\)
\(\Leftrightarrow x=\dfrac{19}{4}\)
Với mọi \(x\in R\)
\(\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|\ge0\Leftrightarrow6x\ge0\Leftrightarrow x\ge0\)
với \(x\ge0\) ta được: \(\left\{{}\begin{matrix}\left|x+2016\right|=x+2016\\\left|x+2017\right|=x+2017\\\left|x+2018\right|=x+2018\end{matrix}\right.\)
\(pt\Leftrightarrow3x+6051=6x\Leftrightarrow3x=6051\Leftrightarrow x=2017\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) ADTCDTSBN
có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}=\frac{x-y-z}{3-5+7}=\frac{20}{5}=4.\)
=> ...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)
\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)
\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)
\(\left[x+\frac{2016}{2017}\right]^6=0\Leftrightarrow x+\frac{2016}{2017}=0\Rightarrow x=-\frac{2016}{2017}\)
"biểu thức" <=> x+ (2016/2017) = 0 <=> x= - 2016/2017
Vậy x= - 2016/2017