K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

a) (x-5)3-x+5=0

⇔(x-5)3-(x-5)=0

⇔ (x-5)[(x-5)2-1]=0

⇔ (x-5)(x-5-1)(x-5+1)=0

⇔ (x-5)(x-6)(x-4)=0

\(\left[{}\begin{matrix}x-5=0\\x-6=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)

vậy ...

b) (x2+1)(x-2)+2x=4

⇔ (x2+1)(x-2)+2x-4=0

⇔ (x2+1)(x-2)+(2x-4)=0

⇔ (x2+1)(x-2)+2(x-2)=0

⇔(x-2)(x2+1+2)=0

⇔ (x-2)(x2+3)=0

\(\left[{}\begin{matrix}x-2=0\\x^2+3=0\end{matrix}\right.\left[{}\begin{matrix}x=2\\x^2=-3\left(voli\right)\end{matrix}\right.\)

vậy

11 tháng 12 2016

a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)

\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )

\(\Leftrightarrow x=2\)

b) \(2x^3+x^2-6x=0\)

\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)

\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)

c) \(4x^2+4xy+x^2-2x+1+y^2=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)

16 tháng 6 2020
https://i.imgur.com/CWk68aD.jpg
3 tháng 6 2018

1.

a) \(\left\{4x-2\left(x-3\right)-3\left[x-3\left(4-2x\right)+8\right]\right\}.\left(-3x\right)\)

= \(\left[4x-2x+6-3\left(x-12+6x\right)+8\right].\left(-3x\right)\)

\(=\left(4x-2x+6-3x+36-18x+8\right).\left(-3x\right)\)

= \(\left(-19x+50\right).\left(-3x\right)\)

\(=57x^2-150x\)

b) \(5\left(3x^2+4y^3\right)+\left[9\left(2x^2-y^3\right)-2\left(x^2-5y^3\right)\right]\)

\(=15x^2+20y^3+\left(18x^2-9y^3-2x^2+10y^3\right)\)

\(=15x^2+20y^3+16x^2+y^3\)

\(=31x^2+21y^3\)

2.

a) \(5x\left(1-2x\right)-3x\left(x+18\right)=0\)

\(\Rightarrow5x-10x^2-3x^2-54x=0\)

\(\Rightarrow-49x-13x^2=0\)

\(\Rightarrow x\left(-49-13x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-49}{13}\end{matrix}\right.\)

b)

\(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)

\(\Rightarrow5x-3\left[4x-2\left(4x-15x+6\right)\right]=182\)

\(\Rightarrow5x-3\left(4x-8x+30x-12\right)=182\)

\(\Rightarrow5x-12x+24x-90x+36=182\)

\(\Rightarrow-73x-146=0\)

\(\Rightarrow x=-2\)

3 tháng 6 2018

cảm ơn bạnvui

14 tháng 8 2020

a) 16x^2 - (4x - 5)^2 = 15

<=> 16x^2 - 16x^2 + 40x - 25 = 15

<=> 40x = 40

<=> x = 1

b) (2x + 3)^2 - 4(x - 1)(x + 1) = 49

<=> 4x^2 + 12x + 9 - 4x^2 - 4x + 4x + 4 = 49

<=> 12x + 13 = 49

<=> 12x = 36

<=> x = 3

c) (2x + 1)(1 - 2x) + (1 - 2x)^2 = 18

<=> 1 - 4x^2 + 1 - 4x + 4x^2 = 18

<=> 2 - 4x = 18

<=> -4x = 16

<=> x = -4

d)2(x + 1)^2 - (x - 3)(x + 3) - (x - 4)^2 = 0

<=> 2x^2 + 4x + 2 - x^2 + 3^2 - x^2 + 8x - 16 = 0

<=> 12x - 5 = 0

<=> 12x = 5

<=> x = 5/12

e) (x - 5)^2 - x(x - 4) = 9

<=> x^2 - 10x + 25 - x^2 + 4x = 9

<=> -6x + 25 = 9

<=> -6x = 9 - 25

<=> -6x = -16

<=> x = -16/-6 = 8/3

f) (x - 5)^2 + (x - 4)(1 - x) = 0

<=> x^2 - 10x + 25 + x - x^2 - x - 4 + 4x = 0

<=> -5x + 21 = 0

<=> -5x = -21

<=> x = 21/5

30 tháng 6 2018

\(\left(x-5\right)^3-x+5=0\)

\(\Rightarrow\left(x-5\right)^3-\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right).\left[\left(x-5\right)^2-1\right]=0\)

\(\Rightarrow\hept{\begin{cases}x-5=0\\\left(x-5\right)^2-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=5\\x=6;4\end{cases}}}\)

\(\Rightarrow x\in\left\{4;5;6\right\}\)

18 tháng 9 2018

Bài 1:

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(114x^2+216x+81=114x^2-480x+400\)

\(144x^2+216x=144x^2-480x+400-81\)

\(114x^2+216=114x^2-480x+319\)

\(696x=319\)

\(\Rightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Rightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x=-1\)

Bài 2:

a) \(5x^3-7x^2-15x+21=0\)

\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Rightarrow x=\frac{7}{5}\)

b) \(\left(x-3\right)^2=4x^2-20x+25\)

\(x^2-6x+9-25=4x^2-20x+25\)

\(x^2-6x+9=4x^2-20x+25-25\)

\(x^2-6x-16=4x^2-20x\)

\(x^2+14x-16=4x^2-4x^2\)

\(-3x^2+14x-16=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)

\(x^2-2x=x-4\)

\(x^2-2x=x-4+4\)

\(x^2-2x=x-x\)

\(x^2-3x=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)

\(-48x^2+56x-24=-24\)

\(-48x^2+56x=-24+24\)

\(-48x^2+56=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)

mình ko chắc

Bài 1

A, 11/24

B, -1

chúc bn học tốt

26 tháng 8 2019

a) \(3x^3-6x^2=0\)

\(3x^2\left(x-2\right)=0\)

\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) \(x\left(x-4\right)-12x+48=0\)

\(x^2-4x-12x+48=0\)

\(x^2-16x+48=0\)

\(\left(x-12\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) Viết thiếu nha :v

d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)

\(2x^2-10x-x^2-2x^2-3x=16\)

\(-13x=16\)

\(x=-\frac{16}{13}\)

e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)

\(4x^2-1-x^2+2x-1=-3\)

\(3x^2-2+2x=-3\)

\(3x^2-2+2x+3=0\)

\(3x^2+1+2x=0\)

Vì \(3x^2+1+2x>0\)nên: 

\(x\in\varnothing\)

26 tháng 8 2019

A) 3x3 - 6x2 = 0

=> 3x2(x - 2) = 0

=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) x(x - 4) - 12x + 48 = 0

=> x(x - 4) - 12(x - 4) = 0

=> (x - 12)(x - 4) = 0

=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8 

21 tháng 8 2021

a, \(\left(2x+1\right)\left(1-2x\right)+\left(1-2x\right)^2=0\)

\(\Leftrightarrow\left(1-2x\right)\left(2x+1+1-2x\right)=0\Leftrightarrow x=\frac{1}{2}\)

b, \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)

\(\Leftrightarrow2\left(x^2+2x+1\right)-\left(x^2-9\right)-\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\Leftrightarrow12x-5=0\Leftrightarrow x=\frac{5}{12}\)

c, \(\left(x-5\right)^2-x\left(x-4\right)=9\Leftrightarrow x^2-10x+25-x^2+4x=9\)

\(\Leftrightarrow-6x+16=0\Leftrightarrow x=\frac{8}{3}\)

d, \(\left(x-5\right)^2+\left(x-4\right)\left(1-x\right)=0\)

\(\Leftrightarrow x^2-10x+25+x-x^2-4+4x=0\)

\(\Leftrightarrow-5x+21=0\Leftrightarrow x=\frac{21}{5}\)