Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
a ) \(x^2\left(x+3\right)+y^2\left(y+5\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow x^3+3x^2+y^3+5y^2-\left(x^3+y^3\right)=0\)
\(\Leftrightarrow3x^2+5y^2=0\)
Do \(\left\{{}\begin{matrix}3x^2\ge0\forall x\\5y^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow3x^2+5y^2\ge0\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2=0\\5y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy \(x=0;y=0\)
b )\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(-16\left(x^3-y\right)=32\)
\(\Leftrightarrow\left[\left(2x\right)^3-y^3\right]+\left[\left(2x\right)^3+y^3\right]-16x^3+16y=32\)
\(\Leftrightarrow8x^3-y^3+8x^3+y^3-16x^3+16y=32\)
\(\Leftrightarrow16y=32\)
\(\Leftrightarrow y=2\)
Vậy \(y=2\)
a) \(x^4+x^3+2x^2+x+1=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2+1\right)\)
b) \(4x^2-4x-3=4x^2+2x-6x-3=2x\left(2x+1\right)-3\left(2x+1\right)=\left(2x+1\right)\left(2x+3\right)\)
c) \(4x^4+81=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-36x^2=\left(2x^2-6x+9\right)\left(2x^2+6x-9\right)\)
d) \(x^2-6xy-25+9y^2=\left(x-3y\right)^2-25=\left(x-3y-5\right)\left(x-3y+5\right)\)
e) \(x^2-8y^2-2xy=x^2+2xy-4xy-8y^2=x\left(x+2y\right)-4y\left(x+2y\right)=\left(x+2y\right)\left(x-4y\right)\)
Mình chỉ biết bài b) thôi, mà cũng ko biết có đúng ko
x4+x3+x+1=0
<=> (x4+x3)+(x+1)=0
<=> x3(x+1)+(x+1)
<=> (x+1)(x3+1)=0
=>x+1=0
x3+1=0
=> x= -1
x3= -1
=> x= -1