\(\sqrt{\left(x-3\right)^2}\)= 3 -x

b) ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

a) \(ĐKXĐ:x\le3\)

\(\sqrt{\left(x-3\right)^2}=3-x\)

\(\Leftrightarrow3-x=3-x\)(luôn đúng)

Vậy phương trình thỏa mãn với mọi x thỏa mãn ĐKXĐ.

b)\(ĐKXĐ:x\le\frac{5}{2}\)

 \(\sqrt{25-20x+4x^2}+2x=5\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)

\(\Leftrightarrow5-2x=5-2x\)(luôn đúng)

Vậy phương trình thỏa mãn với mọi x t/m ĐKXĐ.

18 tháng 6 2019

Bác tiến sĩ k e sai thì giải thích rõ để e rút kinh nghiệm ạ

19 tháng 8 2017

B1:

a. \(\sqrt{\dfrac{4}{2x+3}}\)được xác định khi:\(\dfrac{4}{2x+3}\ge0\Leftrightarrow2x+3>0\Leftrightarrow x>-\dfrac{3}{2}\)

b.\(\sqrt{x\left(x+2\right)}\text{ }\) được xác định khi :\(x\left(x+2\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\le-2\end{matrix}\right.\)

c.\(\sqrt{\dfrac{2x-1}{2-x}}\) được xác định khi :\(\dfrac{2x-1}{2-x}\ge0\Leftrightarrow\dfrac{1}{2}\le x< 2\)

B2:

a.\(\sqrt{\left(\sqrt{3}-2\right)^2}=|\sqrt{3}-2|=2-\sqrt{3}\) ( vì \(\sqrt{3}< \sqrt{4}=2\))

b.\(\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=|\sqrt{3}-1|=\sqrt{3}-1\)(vì \(\sqrt{3}>\sqrt{1}=1\))

c.\(\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}=|\sqrt{5}-2|=\sqrt{5}-2\)(vì \(\sqrt{5}>\sqrt{4}=2\))

B3:

a.\(\sqrt{25-20x+4x^2}+2x=5\)

\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)

\(\Leftrightarrow|5-2x|+2x=5\) (1)

Nếu \(5-2x\le0\Leftrightarrow x\ge\dfrac{5}{2}\).Khi đó :

(1)\(\Leftrightarrow2x-5+2x=5\Leftrightarrow4x=10\Leftrightarrow x=\dfrac{5}{2}\)(thoả mãn đk)

Nếu \(5-2x>0\Leftrightarrow x< \dfrac{5}{2}\).Khi đó :

(1)\(\Leftrightarrow5-2x+2x=5\Leftrightarrow5=5\)(luôn đúng với mọi x )

kết hợp với điều kiện ta được :\(x< \dfrac{5}{2}\)

Vậy nghiệm của phương trình đã cho là \(x=\dfrac{5}{2}\) hoặc \(x< \dfrac{5}{2}\)

b.\(\sqrt{x^2+\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\)

\(\Leftrightarrow\sqrt{\left(x+\dfrac{1}{4}\right)^2}=\dfrac{1}{4}-x\)

\(\Leftrightarrow|x+\dfrac{1}{4}|=\dfrac{1}{4}-x\) (2)

Nếu \(x+\dfrac{1}{4}\le0\Leftrightarrow x\le-\dfrac{1}{4}\).Khi đó :

(2)\(\Leftrightarrow-\left(x+\dfrac{1}{4}\right)=\dfrac{1}{4}-x\Leftrightarrow\dfrac{1}{4}-x=\dfrac{1}{4}-x\) (luôn đúng với mọi x)

kết hợp với điều kiện ta được :\(x\le-\dfrac{1}{4}\)

Nếu \(x+\dfrac{1}{4}>0\Leftrightarrow x>-\dfrac{1}{4}\).Khi đó :

(2)\(\Leftrightarrow x+\dfrac{1}{4}=\dfrac{1}{4}-x\Leftrightarrow2x=0\Leftrightarrow x=0\)(tmđk)

Vậy nghiêm của phương trình là \(x\le-\dfrac{1}{4}\) hoặc \(x=0\)

c.\(\sqrt{x-2\sqrt{x-1}}=2\) (đkxđ :\(x\ge1\))

\(\Leftrightarrow\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow|\sqrt{x-1}-1|=2\)

\(\Leftrightarrow\sqrt{x-1}-1=2ho\text{ặc}\sqrt{x-1}-1=-2\)

\(\Leftrightarrow\sqrt{x-1}=3ho\text{ặc}\sqrt{x-1}=-1\)(vô nghiệm )

\(\Leftrightarrow x=10\)(tmđk )

Vậy nghiệm của phương trình đã cho là \(x=10\)

12 tháng 8 2018

a.\(\sqrt{\left(x-3\right)^2}=3-x\)

\(\Leftrightarrow x-3=3-x\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

b.\(\sqrt{4x^2-20x+25}+2x=5\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)

\(\Leftrightarrow2x-5=5-2x\)

\(\Leftrightarrow4x=10\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

c.

d.\(\sqrt{x^2-\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\)

\(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{4}\right)^2}=\dfrac{1}{4}-x\)

\(\Leftrightarrow x-\dfrac{1}{4}=\dfrac{1}{4}-x\)

\(\Leftrightarrow x=\dfrac{1}{4}\)

a: =>|x-3|=3-x

=>x-3<=0

hay x<=3

b: =>|2x-5|=-2x+5

=>2x-5<=0

=>x<=5/2

c: =>|căn x-1-1|=căn x-1-1

=>căn x-1-1>=0

=>căn x-1>=1

=>x-1>=1

hay x>=2

2 tháng 7 2018

a) \(\sqrt{\left(x-3\right)^2}=3\Leftrightarrow\left|x-3\right|=3\) \(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(N\right)\\x=0\left(N\right)\end{matrix}\right.\)

b) \(\sqrt{4x^2-20x+25}+2x=5\Leftrightarrow\left|2x-5\right|+2x-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x-5+2x-5=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\5-2x+2x-5=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x-10=0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\0x=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x=\dfrac{10}{4}\left(N\right)\end{matrix}\right.\\x\le\dfrac{5}{2}\end{matrix}\right.\) ** 10/4 = 5/2 rồi**

Kl: x \< 5/2

c) \(\sqrt{1-12x+36x^2}=5\Leftrightarrow\left|1-6x\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}1-6x=5\\1-6x=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(N\right)\\x=1\left(N\right)\end{matrix}\right.\)

Kl: x=-2/3, x=1

d) Đk: x >/ 1

\(\sqrt{x+2\sqrt{x-1}}=2\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}+1=2\left(1\right)\\\sqrt{x-1}+2=-2\left(VN\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\)(N)

Kl: x=2

e) Đk: x >/ 1

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge1\\\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x-1}-1=\sqrt{x-1}-1\) (luôn đúng)

kl: x >/ 1

f) \(\sqrt{x^2-\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\left|\dfrac{1}{4}-x\right|=\dfrac{1}{4}-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\dfrac{1}{4}-x=\dfrac{1}{4}-x\end{matrix}\right.\)

(luôn đúng)

Kl: x \< 1/4

Lần sau xé nhỏ câu hỏi giùm con nha má, để nhiều thế này thất thu T_T!

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

4 tháng 8 2019

Nhiều vậy sao giải @@

a) Đặt \(a=\sqrt{1+x}+\sqrt{8-x}\)

\(\Leftrightarrow a^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Leftrightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Leftrightarrow\frac{a^2-9}{2}=\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(pt\Leftrightarrow a+\frac{a^2-9}{2}=3\)

\(\Leftrightarrow\frac{a^2+2a-9}{2}=3\)

\(\Leftrightarrow a^2+2a-9=6\)

\(\Leftrightarrow a^2+2a-15=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-5\end{matrix}\right.\)

Tới đây thay vào rồi tìm x

b) \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\)

Ta có : \(a^2+b^2=x^2-x+1+x+1=x^2+2\)

\(pt\Leftrightarrow2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow2a^2-4ab+2b^2-ab=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)

Tới đây thay vào rồi lại giải tiếp

p/s: Mình bận rồi, bao giờ rảnh giải tiếp

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

15 tháng 8 2017

1)\(\sqrt{9\left(x-1\right)}=21\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow\hept{\begin{cases}7\ge0\\x-1=49\end{cases}\Leftrightarrow x=50}\)

17 tháng 9 2017

no no no

19 tháng 6 2019

Bài 4 :

\(a,\sqrt{x-1}=2\)

=> \(x-1=2^2=4\)

=>\(x=4+1=5\)

Vậy \(x\in\left\{5\right\}\)

\(b,\sqrt{x^2-3x+2}=2\)

=> \(x^2-3x+2=2\)

=> \(x^2-3x=2-2=0\)

=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )

=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\)

MÌNH Biết vậy thôi ,

19 tháng 6 2019

Bài 4 :

c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)

\(\Leftrightarrow4x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+2x+1-4x-1=0\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )

d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\)( luôn đúng )

+) Xét \(1\le x< 2\):

\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)( loại )

Vậy \(x\ge2\)