\(x\), biết :

a) \(\sqrt{9x^2}=2x+1\)

b) ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

a) \(\sqrt{9x^2}=2x+1\) (1)

\(\Leftrightarrow3\cdot\left|x\right|=2x+1\)

\(\Leftrightarrow3\cdot\left|x\right|-2x=1\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2x=1\left(đk:x\ge0\right)\\3\cdot\left(-x\right)-2x=1\left(đk:x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(đk:x\ge0\right)\\x=-\dfrac{1}{5}\left(đk:x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{-\dfrac{1}{5};1\right\}\)

b) \(\sqrt{x^2+6x+9}=3x-1\) (2)

\(\Leftrightarrow x^2+6x+9=\left(3x-1\right)^2\)

\(\Leftrightarrow x^2+6x+9=9x^2-6x+1\)

\(\Leftrightarrow x^2+6x+9-9x^2+6x-1=0\)

\(\Leftrightarrow-8x^2+12x+8=0\)

\(\Leftrightarrow2x^2-3x-4=0\)

\(\Leftrightarrow x=\dfrac{-\left(-3\right)\pm\sqrt{\left(-3\right)^2-4\cdot2\cdot\left(-2\right)}}{2\cdot2}\)

\(\Leftrightarrow x=\dfrac{3\pm\sqrt{9+16}}{4}\)

\(\Leftrightarrow x=\dfrac{3\pm5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+5}{4}\\x=\dfrac{3-5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\)

sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{1}{2}\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{2\right\}\)

c) \(\sqrt{1-4x+4x^2}=5\) (3)

\(\Leftrightarrow1-4x+4x^2=25\)

\(\Leftrightarrow\left(1-2x\right)^2=25\)

\(\Leftrightarrow1-2x=\pm5\)

\(\Leftrightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{-2;3\right\}\)

d) \(\sqrt{x^4}=7\) (4)

\(\Leftrightarrow x^2=7\)

\(\Leftrightarrow x=\pm\sqrt{7}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\)

Vậy tập nghiệm phương trình (4) là \(S=\left\{-\sqrt{7};\sqrt{7}\right\}\)

24 tháng 11 2018

\(\sqrt{1-4x+4x^2}=5\). Bình phương hai vế,ta có:

\(PT\Leftrightarrow1-4x+4x^2=25\)

\(\Leftrightarrow-4x+4x^2=24\Leftrightarrow4\left(-x+x^2\right)=24\)

\(\Leftrightarrow x^2-x=6\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\) 

21 tháng 8 2017

đầu tiien, tìm đk của x ở dưới căn, tiếp theo, bình phương 2 vế ,thì vế trái sẽ mất dấu căn thức, còn vế phải thì tự tính. Khi mất dấu căn, bài toán sẽ trở nên bt, tính ra kết quả, đối chiếu đk tìm đc ở trên và kết luận. 4 bài trên , bài nào cx có thể lm như thế !

11 tháng 6 2018

a/ \(\sqrt{9x^2}=2x+1\)

\(\Leftrightarrow\left|3x\right|=2x+1\)

+) Với x ≥ 0 ta có:

\(3x=2x+1\Leftrightarrow x=1\left(tm\right)\)

+) Với x < 0 có:

\(3x=-2x-1\Leftrightarrow5x=-1\Leftrightarrow x=-\dfrac{1}{5}\left(tm\right)\)

Vậy pt có 2 nghiệm..............................

b/ \(\sqrt{1-4x+4x^2}=5\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)

\(\Leftrightarrow\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)(t/m)

Vậy................................

c/ \(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

+) Với x ≥ -3 ta có:

\(x+3=3x-1\Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)

+) Với x < -3 có:

\(x+3=1-3x\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\left(ktm\right)\)

Vậy pt có 1 nghiệm x = 2

d/ \(\sqrt{x^4}=7\Leftrightarrow x^2=7\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)

Vậy.................

e/ \(x^2+2\sqrt{13x}=-13\)

ĐK : x ≥ 0

Ta thấy: \(x^2\ge0;2\sqrt{13x}\ge0\)

\(\Rightarrow x^2+2\sqrt{13x}\ge0\)

lại có: -13 < 0

=> Pt vô nghiệm

11 tháng 6 2018

Giải:

a) \(\sqrt{9x^2}=2x+1\)

\(\Leftrightarrow\sqrt{\left(3x\right)^2}=2x+1\)

\(\Leftrightarrow3x=2x+1\)

\(\Leftrightarrow x=1\)

Vậy ...

b) \(\sqrt{1-4x+4x^2}=5\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)

\(\Leftrightarrow1-2x=5\)

\(\Leftrightarrow-2x=5-1\)

\(\Leftrightarrow x=-2\)

Vậy ...

c) \(\sqrt{x^2+6x+9}=3x+1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x+1\)

\(\Leftrightarrow x+3=3x+1\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

Vậy ...

d) \(\sqrt{x^4}=7\)

\(\Leftrightarrow x^2=7\)

\(\Leftrightarrow x=\pm\sqrt{7}\)

Vậy ...

e) \(x^2+2\sqrt{13}x=-13\) (Sửa đề)

\(\Leftrightarrow x^2+2\sqrt{13}x+13=0\)

\(\Leftrightarrow\left(x+\sqrt{13}\right)^2=0\)

\(\Leftrightarrow x+\sqrt{13}=0\)

\(\Leftrightarrow x=-\sqrt{13}\)

Vậy ...

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

10 tháng 5 2018

1000 bang 2

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))

18 tháng 7 2019
https://i.imgur.com/vtt9DTn.jpg
18 tháng 7 2019

Gửi em

\(---\begin{gathered} a)\sqrt {1 - 6x + 9{x^2}} = 5 \hfill \\ \Leftrightarrow \sqrt {{{\left( {1 - 3x} \right)}^2}} = 5 \hfill \\ \Leftrightarrow \left| {1 - 3x} \right| = 5 \hfill \\ T{H_1}:1 - 3x \geqslant 0 \Rightarrow x \leqslant \frac{1}{3} \hfill \\ 1 - 3x = 5 \hfill \\ \Leftrightarrow - 3x = 5 - 1 \hfill \\ \Leftrightarrow - 3x = 4 \hfill \\ \Leftrightarrow x = - \frac{4}{3}\left( {TM} \right) \hfill \\ T{H_2}:1 - 3x < 0 \Rightarrow x > \frac{1}{3} \hfill \\ - \left( {1 - 3x} \right) = 5 \hfill \\ \Leftrightarrow - 1 + 3x = 5 \hfill \\ \Leftrightarrow 3x = 5 + 1 \hfill \\ \Leftrightarrow 3x = 6 \hfill \\ \Leftrightarrow x = \frac{6}{3} \hfill \\ \Leftrightarrow x = 2\left( {TM} \right) \hfill \\ b)\sqrt {{x^2} - 4x + 4} = 7 \hfill \\ \Leftrightarrow \sqrt {{{\left( {x - 2} \right)}^2}} = 7 \hfill \\ \Leftrightarrow \left| {x - 2} \right| = 7 \hfill \\ T{H_1}:x - 2 \geqslant 0 \Rightarrow x \geqslant 2 \hfill \\ x - 2 = 7 \hfill \\ \Leftrightarrow x = 7 + 2 \hfill \\ \Leftrightarrow x = 9\left( {TM} \right) \hfill \\ T{H_2}:x - 2 < 0 \Rightarrow x < 2 \hfill \\ - \left( {x - 2} \right) = 7 \hfill \\ \Leftrightarrow - x + 2 = 7 \hfill \\ \Leftrightarrow - x = 7 - 2 \hfill \\ \Leftrightarrow - x = 5 \hfill \\ \Leftrightarrow x = - 5\left( {TM} \right) \hfill \\ c)\sqrt {25 - 10x + {x^2}} = 7 - 2x \hfill \\ \Leftrightarrow \sqrt {{{\left( {5 - x} \right)}^2}} = 7 - 2x \hfill \\ \Leftrightarrow \left| {5 - x} \right| = 7 - 2x \hfill \\ \Leftrightarrow \left| {5 - x} \right| + 2x = 7 \hfill \\ T{H_1}:5 - x \geqslant 0 \Rightarrow x \leqslant 5 \hfill \\ 5 - x + 2x = 7 \hfill \\ \Leftrightarrow 5 + x = 7 \hfill \\ \Leftrightarrow x = 7 - 5 \hfill \\ \Leftrightarrow x = 2\left( {TM} \right) \hfill \\ T{H_2}:5 - x < 0 \Rightarrow x > 5 \hfill \\ - \left( {5 - x} \right) + 2x = 7 \hfill \\ \Leftrightarrow - 5 + x + 2x = 7 \hfill \\ \Leftrightarrow 3x = 7 + 5 \hfill \\ \Leftrightarrow 3x = 12 \hfill \\ \Leftrightarrow x = 4\left( {KTM} \right) \hfill \\ d)\sqrt {{x^2} + 6x + 9} = 3x - 1 \hfill \\ \Leftrightarrow \sqrt {{{\left( {x + 3} \right)}^2}} = 3x - 1 \hfill \\ \Leftrightarrow \left| {x + 3} \right| = 3x - 1 \hfill \\ \Leftrightarrow \left| {x + 3} \right| - 3x = - 1 \hfill \\ T{H_1}:x + 3 \geqslant 0 \Rightarrow x \geqslant - 3 \hfill \\ x + 3 - 3x = - 1 \hfill \\ \Leftrightarrow - 2x = - 1 - 3 \hfill \\ \Leftrightarrow - 2x = - 4 \hfill \\ \Leftrightarrow x = \frac{{ - 4}}{{ - 2}} \hfill \\ \Leftrightarrow x = 2\left( {TM} \right) \hfill \\ T{H_2}:x + 3 < 0 \Rightarrow x < - 3 \hfill \\ - \left( {x + 3} \right) - 3x = - 1 \hfill \\ \Leftrightarrow - x - 3 - 3x = - 1 \hfill \\ \Leftrightarrow - 4x = - 1 + 3 \hfill \\ \Leftrightarrow - 4x = 2 \hfill \\ \Leftrightarrow x = \frac{2}{{ - 4}} \hfill \\ \Leftrightarrow x = - \frac{1}{2}\left( {KTM} \right) \hfill \\ \end{gathered} \)